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A B S T R A C T

Connectivity modeling in functional neuroimaging has become widely used method of analysis for understanding functional architecture. One method for deriving
directed connectivity models is Group Iterative Multiple Model Estimation (GIMME; Gates and Molenaar, 2012). GIMME looks for commonalities across the sample to
detect signal from noise and arrive at edges that exist across the majority in the group (“group-level edges”) and individual-level edges. In this way, GIMME obtains
generalizable results via the group-level edges while also allowing for between subject heterogeneity in connectivity, moving the field closer to obtaining reliable
personalized connectivity maps. In this article, we present a novel extension of GIMME, confirmatory subgrouping GIMME, which estimates subgroup-level edges for a
priori known groups (e.g. typically developing controls vs. clinical group). Detecting edges that consistently exist for individuals within predefined subgroups aids in
interpretation of the heterogeneity in connectivity maps and allows for subgroup-specific inferences. We describe this algorithm, as well as several methods to examine
the results. We present an empirical example that finds similarities and differences in resting state functional connectivity among four groups of children: typically
developing controls (TDC), children with autism spectrum disorder (ASD), children with Inattentive (ADHD-I) and Combined (ADHD-C) Type ADHD. Findings from
this study suggest common involvement of the left Broca's area in all the clinical groups, as well as several unique patterns of functional connectivity specific to a given
disorder. Overall, the current approach and proof of principle findings highlight a novel and reliable tool for capturing heterogeneity in complex mental health
disorders.
1. Introduction

In recent decades, functional neuroimaging has become an increas-
ingly widely used tool for investigating a variety of cognitive behaviors as
well as both medical and psychological disorders. One specific use of
functional imaging is in determining differences in brain processes be-
tween groups of subjects, such as comparing children diagnosed with
autism to typically developing controls with regard to functional acti-
vation or connectivity.

Functional connectivity approaches have emerged as powerful tools
for studying group differences in functional organization. However,
within the functional connectivity framework there are many different
methodologies for analyzing group differences, each of which have ad-
vantages and disadvantages. Many times, investigators interested in
assessing functional connectivity begin by starting with a graph, or a
matrix form that indicates how brain regions relate to each other across
time. Using a correlation matrix of contemporaneous (i.e., lag-0)
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relations between regions of interest (ROIs) represents the most common
approach for arriving at such graphs. Here, the correlation coefficients
are considered “edges,” where the brain regions themselves are consid-
ered nodes. The use of correlation matrices for group comparisons has
limitations – primarily, each paired relationship does not take into ac-
count the potential influence of other regions (Marrelec et al., 2006;
Varoquaux and Craddock, 2013). Methods which do consider indirect
effects such as partial correlations, have been considered as ways to
handle this issue (Smith et al., 2011); however, the use of partial corre-
lations must also be cautioned since each estimated coefficient between
two given regions has arbitrarily controlled for every other region's po-
tential influence. This heavy-handed approach could cause true edges
among regions to be missed due to suppression effects (Kutner et al.,
2005).

A different set of methods, causal search algorithms, provides a means
to both account for indirect effects, as well as induce sparsity. These al-
gorithms take the BOLD time series of the ROIs of interest and return a
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sparse, directed weighted functional connectivity1 matrix that contains
only edges that most parsimoniously describe the overall pattern of
functional connectivity for a subject. A number of desirable qualities
emerge. By being directed, the algorithms test whether a putative causal
relationship exists between two given regions after controlling for other
relevant brain regions. Additionally, these algorithms provide weighted
edges, enabling inferences as to whether a given region inhibits (i.e., is
negative) or excites (positive) another region. The sparsity in these
connectivity patterns differs from the sparsity induced in correlation and
partial correlation approaches in important ways. For one, the sparsity is
arrived at without the need to arbitrarily threshold at a given value as is
often done in correlation-based approaches. When using causal search
algorithms, sparsity is identified through a data-driven approach, rather
than specified a priori or inferred post hoc. Two, rather than control for all
possible influences from other brain regions (as in partial correlation) or
none of them (as in correlation), estimates obtained from causal search
algorithms control for only those regions that have been found to have an
effect on the target variable. In this way, bias in the estimate is reduced
by considering third-party variables but suppression is less likely to
happen. Three, rather than being symmetric and providing the presence
of a bidirectional relation, these algorithms ascertain which brain region
explains a statistically significant amount of variability in a given brain
region (controlling for other possible regions). Together, these benefits
attend more closely to the underlying hypotheses of interest in connec-
tivity analysis by detecting relations among brain regions in ways that
decrease the likelihood of spurious edges and false negatives (Mumford
and Ramsey, 2014).

There are a variety of causal search algorithms used in fMRI research
(for review see: Henry and Gates, 2017), and here we use a novel variant
of one of the algorithms found to be most reliable: Group Iterated Mul-
tiple Model Estimation (GIMME; Gates and Molenaar, 2012). We term
the variant Confirmatory Subgrouping GIMME (CS-GIMME) since pre-
defined classifications of individuals will be taken into account during
the model search procedure. Prior to the inception of GIMME, Smith et al.
(2011) revealed that most analytic approaches for arriving at directed
patterns of connectivity perform poorly when individual-level analysis is
conducted. GIMME performed as well as the best approaches in the
simulations of Smith et al. (2011) in terms of determining the presence of
a connection, with the added benefit of being uniquely able to detect the
directionality of effects (Gates and Molenaar, 2012).

Additionally, GIMME is one of few techniques that do not assume this
homogeneity in brain processes. Said differently, GIMME does not pre-
suppose that brain processes are ergodic when looking across individuals
(see Molenaar, 2004). The algorithm achieves this by not forcing models
to be similar across individuals. It does look for similarities, should they
exist, in patterns of edges across individuals in order to detect signal from
noise at the start of the algorithm. Looking for edges that replicate across
the majority of individuals improves the reliability of the results for the
search for individual-level, or unique, edges (Gates and Molenaar, 2012).
By contrast, methods that aggregate individuals that are heterogeneous
in their dynamic processes lead to spurious results that may fail to
describe any one individual in the sample (Molenaar and Campbell,
2009). Because of this quality, reliable group- and individual-level edges
are obtained from GIMME at rates higher than most competing ap-
proaches. GIMME has been highlighted as one of the best options avail-
able for recovering the presence of individual-level edges (Mumford and
Ramsey, 2014), due to its high rate of recovery in both the presence of
edges and the direction of those edges, and has been used in fMRI studies
with focuses ranging from language processing (Yang et al., 2015) to
1 In following convention and technical definitions, “directed functional
connectivity” is used rather than “effective connectivity” since the latter requires
modeling of causal influences which typically requires the probing changes in
connectivity patterns in the presence of experimental manipulation (Friston,
2011).
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substance use (Beltz et al., 2013; Zelle et al., 2017) and clinical diagnoses
(Gates et al., 2010; Price et al., 2017).

The current manuscript extends GIMME by also searching for
subgroup-level edges that exist for predefined (i.e., user-specified) sub-
sets of individuals. Following the heuristic for the group-level edge
search, the subgroup-level search identifies patterns of edges that exist
for the majority of individuals in each subgroup. Prior work has sug-
gested that searching for similarities across smaller subsets of individuals
using the same algorithmic approach within GIMME further improves
recovery of edges (Gates et al., 2017; Lane, Gates, Pike, Beltz, & Wright,
In Press). A critical benefit of this approach is that it is possible to have no
subgroup-level edges - the algorithm only returns them if they truly exist.
At the end of the model searches, all individuals have unique estimates
for the group- and subgroup-level edges, in addition to unique edges if
needed to explain variance in the brain regions. Simulated data studies
have demonstrated that the algorithm within GIMME for arriving at
subgroup-level edges can recover them at very high rates (Gates et al.,
2017; Lane et al., In press). A drawback of these previously investigations
is that the user was not able to a priori define the subgroups. With
CS-GIMME, a novel extension to GIMME developed for use in the present
paper, the researcher has control over how the participants are organized
into subsets for comparisons.

CS-GIMME provides several additional advantages over other
network neuroscience methods of analysis for examining group differ-
ences. As it provides both whole sample level edges (i.e., common be-
tween groups), as well as subgroup level edges (i.e., unique to a given
group), researchers can describe differences in the strength of common
connections in addition to the presence or absence of edges. It must be
stressed that searches for edges that exist on the group or subgroup levels
do not assume that the individuals share commonalities. Rather than
force them to be estimated for all individuals (as is done in multilevel
approaches and concatenation), CS-GIMME simply detects them if they
are there by using an effective method for detecting signal from noise.
Furthermore, CS-GIMME allows for the analysis of an arbitrary number of
groups, pooling information from all groups to discover common func-
tional connectivity. This allows for a principled positive control analysis,
where for example, in addition to analyzing differences from typically
developing patients, one can compare between clinical groups as well in
the same analysis while also assessing similarities across all groups.

This article is structured as follows; first we describe CS-GIMME in
detail, and describe various tuning parameters that govern its behavior.
Second, we apply CS-GIMME to an empirical dataset of resting state scans
of typically developing controls (TDC), children with attention deficit
hyperactivity disorder combined subtype (ADHD-C), children with
attention deficit hyperactivity disorder inattentive subtype (ADHD-I) and
children with autism spectrum disorder (ASD). In this study, we expand
on the base output of CS-GIMME and describe several inferential tech-
niques to better evaluate specific group differences. Finally, we sum-
marize the findings from the empirical example, and discuss other use
cases for CS-GIMME, as well as several limitations.

2. Confirmatory subgroup GIMME

CS-GIMME extends the original GIMME (Gates and Molenaar, 2012)
and is implemented in the R package gimme, (Lane et al., 2018). The
overarching modeling framework is the unified Structural Equation
Model (uSEM; Gates et al., 2010; Kim et al., 2007), a model that in-
corporates both lagged and contemporaneous directed edges among
brain regions. Modeling contemporaneous edges is crucial for fMRI
studies due to the low temporal resolution. The heavy reliance of
contemporaneous edges in functional connectivity approaches (e.g.,
correlational and ICA) plus results from simulated data studies (Smith
et al., 2011) support this notion. However, including lagged edges is also
important. For one, the measurements used from fMRI studies are based
on processes that are known to be autocorrelated due to the hemody-
namic response to neuronal activity (Logothetis, 2008), so omitting these
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known influences on the signal likely would result in biased estimates.
Two, including autoregressive (AR) relations enables Granger causality
testing (Granger, 1969). Briefly, if a brain region Y is said to “Granger
cause” another region Z, that means that region Y can explain variability
in Z after taking into account the AR effect for region Z. By including the
AR effects via lagged edges early in the model building process GIMME
detects directionality at higher rates than if they were omitted (Lane
et al., In Press).

The general uSEM may be formally defined as:

ηt ¼ Aηt þ ϕηt�1 þ ζt

where A is a p� p matrix containing the directed contemporaneous
edges among p brain regions (with a zero diagonal to prevent contem-
poraneous self-prediction), ϕ is a p� p matrix containing the lagged
edges among p brain regions with AR effect estimates on the diagonal, η is
the p� 1 observed time series of brain activity at time t, and the p� 1
vector ζ contains residuals with a mean of zero and diagonal covariance
matrix. The residuals are assumed to be white noise processes and thus
contain no temporal dependencies. The intercept is omitted here for
clarity in presentation but would exist if the data are not mean-centered.

These edges can be decomposed for each individual into group-,
subgroup-, and individual-level relations. That is, certain edges exist for
the entire sample; certain edges exist within a given subgroup k; and
certain additional edges exist for a given individual i. This decomposition
can be expressed as:

ηi;t ¼
�
Ai þ As

i;k þ Ag
i

�
ηi;t þ

�
ϕi þ ϕs

i;k þ ϕg
i

�
ηi;t�1 þ ζi;t

Here, A; ϕ; and ζ are defined as before, where the superscripts s and g
indicate that these edges exist at the subgroup- and group-level, respec-
tively. Importantly, should no subgroup division exist (i.e., all individuals
are in one “subgroup”), this matrix will only contain zeros for individuals
in that subgroup. Parameter matrices A and ϕ that lack a superscript
denote matrices containing only estimates for the individual-level
pattern of edges. Finally, the subscript i on all matrices indicates that
each edge is estimated at the individual-level, even in the cases where
there are group- and subgroup-level patterns of edges.
2.1. Group-level search

The ultimate goal of CS-GIMME is to find patterns of edges that tend
to exist for the entire sample, patterns of edges that exist for previously
defined subgroups of individuals, and additional edges that may exist for
particular individuals. In this way, signal is detected from noise and the
models are not driven entirely by individual nuances. If one were to
approach the data-driven search the opposite way by first arriving at
individual-level models and then assessing similarities for the sample and
the subgroups, the inferences may be driven by noise due to nuances in
the individual-level data and potential for any algorithm to model noise.
By looking for consistencies across individuals in early steps of the data-
driven search CS-GIMME detects signal from noise – first at the sample
(or group) level, then at the subgroup level. The reliably-obtained group-
level and subgroup-level edge patterns in turn greatly aid in accurately
recovering individual-level edges (Lane et al., In Press). Full details of the
model selection procedure can be found in Gates and colleagues (2017).
Here, we briefly describe the relevant steps. The model selection pro-
cedure is implemented in the freely distributed R package, gimme (Lane
et al., 2018), which now allows for both traditional GIMME and
CS-GIMME to be implemented.

The group-level search is guided by the use of modification indices
(MIs), related to Lagrange multipliers (Engle, 1984), which are scores
that indicate the extent to which the addition of a potential edge will
improve the overall model fit for that individual (S€orbom, 1989). As MIs
are asymptotically chi-square distributed, significance can be directly
tested for each MI. It has previously been suggested that models built
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using MIs need to be replicated to demonstrate consistency of relations
(MacCallum, 1986). As such, GIMME only includes edges at the group
level that exist across the majority of individuals. The GIMME algorithm
begins by counting, for each edge, the number of individuals whose
models would significantly improve should that edge be freely estimated.
This results in a count matrix, and the element from the constrained set
that the edge with the highest count is selected. Due to the testing of MIs
across all individuals, the criterion for significance uses a strict Bonfer-
roni correction of α ¼ :05=N, where N¼ the number of individuals. This
starkly contrasts methods that identify edges to include in the group
model by looking at the average of edge weights, as the GIMME approach
cannot be influenced by outlier cases and is impervious to sign differ-
ences (such as large absolute values for all individuals that are negative
for some individuals and positive for others). In fact, information
regarding the sign of the weight is not used in the group-level
search—here, only the absolute magnitude is considered. Should there
be a tie in the count of significant MIs then the algorithm selects the
element with the highest sum of MIs taken across all individuals. The
selection of group-level edges terminates when no edge is significant for a
prespecified proportion of individuals that is considered themajority (see
below for a discussion on this in the “Tuning Parameters” subsection). By
requiring the edges be significant for a majority of individuals GIMME
ensures the final group-level edges truly apply to the individuals in the
sample. Other aggregation approaches may lead group-level relations
that do not describe a given individual in the sample (Molenaar, 2004).

2.2. Confirmatory subgroup-level search

Following the identification of the group-level edges (i.e., edges that
replicate for the majority of the sample), CS-GIMME conducts the search
for edges that exist for the majority of individuals in each respective
subgroup. CS-GIMME searches for subgroup-level edges in a similar
manner to the group-level search by using MIs to guide the addition of
edges. Beginning with the group-level edges as the new null model from
which to search, CS- GIMME identifies the edge that, if estimated for
everyone in that subgroup, would improve the greatest number of in-
dividuals' model fits. The addition of the edge must improve the majority
of individuals' model fits as indicated by Bonferroni corrected p-values
obtained from the MI tests. Again, the threshold for what constitutes the
“majority” for the subgroup can be defined by the researcher. Once
identified, this edge is then estimated for everyone in the subgroup, with
each edge parameter estimated uniquely for each. The procedure stops
adding edges to the models once there are none that will improve the
model for the majority of individuals in that subgroup. Finally, using the
group- and subgroup-level edges as null models for individual-level
searches, CS-GIMME searches for any additional edges that are needed
to best explain each individual's functional connectivity. Here, MIs are
again used and edges with significant MIs are added in a feed-forward
iterative fashion. This method for arriving at subgroup-specific paths
has been extensively evaluated using simulation studies (Gates et al.,
2017; Lane et al., In Press) but has yet to be available for predefined
subgroup classifications. Nonetheless, as CS-GIMME is an extension of
the GIMME algorithm, it inherits GIMME's robustness. A comprehensive
independent review of causal search methods concluded that GIMME
performs as well as competing algorithms out there, and in some cases
offers advantages (see Mumford and Ramsey, 2014). The search algo-
rithm used for subgroup-level paths is the same as that used at the group
level.

2.3. Discussion of tuning parameters for group and subgroup level edges

The group and subgroup-level edge selection processes both require
setting thresholds for what is considered the “majority”. Informed by
prior research and simulations, the default cutoff for the majority
threshold for the group-level search is 75% since this value resulted in
exceptionally good recovery of the data-generating models (Gates and
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Molenaar, 2012). Smith et al. (2011) note that the ability to detect
signal from noise in data simulated to emulate fMRI data varies ac-
cording to the length of the series. They found in their simulations that
the best method can be expected to detect the presence of edges 95% of
the time when block length is 10 min, 77% of the time when it is 5 min,
and 59% of the time when the block length is 2.5 min. Of course, these
rough guidelines will be influenced by the repetition time for scans
since the power to detect effects relies on the length of the time series.
In the GIMME function available in R, the researcher can easily adjust
this value if a more or less strict criterion is desired by adjusting the
“groupcutoff¼ ” argument. Historically, the subgroup-level edges have
used a looser criterion for the majority threshold. The rationale here is
that the subgroups may be smaller, and reaching a majority threshold as
high as 75% may require that almost all the of the individuals in the
subgroup has the edge (e.g., 6 out 7 individuals would have to have an
edge for it to be above this threshold). While the default is that over
50% of the individuals must have a significant edge (as suggested by the
corresponding MI) for it to be added to the subgroup-level model, this
can be adjusted by the researcher by changing the “subcutoff¼ ”

argument in the gimme function. We suggest a stricter threshold for the
use of CS-GIMME, such as .75, as in this case the groups are known a
priori, and recovery of consistent subgroup level paths is the goal of the
analysis and the researcher likely has adequately-sized subgroups based
on their study design.

2.4. Discussion of optimal sample sizes for CS-GIMME

For functional neuroimaging studies both the number of time points
and the number of individuals must be considered. In terms of the
number of time points, GIMME has been previously shown to have
excellent path presence recovery (92–100%) in simulated data with
numbers of time points as low as 50 (2.5min of data at TR of 3 s, see
Smith et al., 2011) while GIMME's ability to distinguish the directionality
of paths begins to suffer by being no better than chance (Gates and
Molenaar, 2012). Accurate recovery of both the presence and direction of
edges occurs consistently with 200 time points (using simulated data
from Smith et al., 2011 and in Gates et al., 2017). Regarding the number
of participants, the algorithm for detecting signal from noise in the edges
performs well with as few as 10 individuals (Gates and Molenaar, 2012).
Given these results, we suggest that the minimum sample size re-
quirements to use CS-GIMME are as follows: at least 10 subjects per
confirmatory group, with at least 200 time points (e.g., 400 s with a
repetition time of 2 s) remaining after motion correction. We stress that
these are minimal suggested requirements, with accuracy and the power
to detect relations improvingwith larger numbers of individuals and time
points.

3. Comparing TDC, ASD, ADHD-I and ADHD-C

In this section we apply CS-GIMME to a dataset consisting of resting
state scans for age, gender and IQ matched typically developing children
and children with ASD, ADHD-C or ADHD-I. This dataset provides an
ideal case to demonstrate the utility of the CS-GIMME approach for
analyzing differences (and similarities) in directed functional connec-
tivity between a variety of groups. First, we present a brief overview of
the disorders, along with a rationale for the following analysis.

3.1. ASD and ADHD

ASD and ADHD are neurodevelopmental disorders. In terms of
prototypical symptomology, ASD and ADHD exhibit different profiles,
with ASD being characterized by delays in social communication/
language along with restricted interests and/or repetitive behaviors
(Constantino and Charman, 2016), while ADHD manifests as solely
inattentive/disorganized or both inattentive/disorganized and hyper-
active/impulsive behaviors (American Psychiatric Association, 2013;
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Matthews et al., 2013). Controversy has led to efforts to identify a
specifically inattentive-only group of youth with ADHD (ADHD-I),
such that new brain imaging data have been called for (Willcutt et al.,
2012).

Despite these differences in symptomology ASD and ADHD pre-
sentations show some overlaps in neurobiological and cognitive findings
such as executive functioning (Gardiner and Iarocci, 2017; Semrud-Cli-
keman et al., 2010), although the ASD effects may be attributable to
comorbid ADHD (Karalunas et al., 2018). Given both their unique and
overlapping properties, ASD and ADHD are well suited to act as positive
controls to one another, as examining directed functional connectivity
differences between disordered groups (and compared to typically
developing children) can provide insight into how neural correlates of
behavior are dissociated between the disorders. In the following analysis
we focus on three functional subnetworks that have been previously
related to either executive functioning in general, or the developmental
disorders: the Default Mode network (DMN), the Salience Network and
the Ventral Attention Network.

The DMN has been widely studied for both its overall role in executive
functioning, as well as its relation with developmental disorders. Previ-
ous work has shown atypical organization for both ASD and ADHD
samples (For reviews see: Henry & Cohen, In Press; Konrad and Eickhoff,
2010; Padmanabhan et al., 2017; Posner et al., 2014), making the DMN
an ideal choice of a functional subnetwork to examine. The Salience
network has been shown to be involved in task maintenance (Menon and
Uddin, 2010; Seeley et al., 2007) and has been implicated in ASD (Di
Martino et al., 2009; Supekar et al., 2013; Uddin et al., 2013; Uddin and
Menon, 2009). Finally, the Ventral Attention network is vital for response
inhibition (Zhang et al., 2017), which shows deficits in ADHD (Booth
et al., 2005).

4. Methods

4.1. Sample

Families were recruited from the community and a tertiary ASD
clinic. A sample of 152 children are included here, assigned as ASD
(n¼ 39, mean age¼ 11.79), ADHD DSM-IV combined type (n¼ 38,
mean age¼ 11.17), ADHD DSM-IV primarily inattentive type (n¼ 38,
mean age¼ 10.83), and typically developing controls (n¼ 37, mean
age¼ 11.04), with an overall age range of 7–15 years and a mean esti-
mated IQ of 108. Groups were comparable on age, gender, and estimated
IQ, and no significant differences on these variables were found (all
p> .05). After preprocessing (see below), the final sample used in this
analysis consisted of 133 children (ASD¼ 31, ADHD-C¼ 31, ADHD-
I¼ 34, TDC¼ 37). Diagnosis was carefully characterized with a multi-
method, multi-informant research assessment protocol based on DSM-V
classification. This included parent and teacher standardized ratings, a
Kiddie Schedule for Affective Disorders and Schizophrenia (Orvaschel,
1994), and, for ASD, an Autism Diagnostic Observation Schedule (Lord
et al., 1989) confirmed by a consensus of research-reliable clinicians
using a best-estimate review of all available information. ASD sympto-
motology was measured using the Social Responsiveness Scale (SRS;
Constantino and Gruber, 2005). Children in the ASD group were
permitted to have a co-morbid diagnosis of ADHD, although other major
psychicatric diagnoses, neurological conditions and non-stimulant psy-
choactive medications were ruled out for all groups. IQ was estimated
with three subtests of the WISC-IV (Wechsler, 2003), and children with
an estimated IQ< 70 were excluded. All children on stimulant medica-
tion completed a minimum washout of 5 half lives (24–48 h) prior to the
MRI. Descriptives of age, gender, symptomology, comorbidity status and
in-scanner motion are provided in Table 1 below:

Of the 31 children with ASD, 16 reached criteria for co-morbid
diagnosis of ADHD-C. Implications of this comorbidity is discussed in
the Discussion section.



Table 1
Demographics. Mean (SD). % M is percent males in group. H-Score is total hy-
peractivity symptom score. I-Score is total inattentive symptom score. SRS is total
SRS score.

Group N %
M

Age IQ H-Score I-Score SRS

TDC 37 62 11.1
(1.42)

111.86
(13.83)

2.78
(3.85)

3.78
(4.23)

NA

ADHD-
I

34 76 11.3
(1.64)

108.42
(13.23)

5.74
(5.46)

14.09
(5.59)

NA

ADHD-
C

31 80 11.25
(1.42)

105.64
(16.27)

14.39
(4.94)

17.06
(5.35)

NA

ASD 31 83 11.59
(2.39)

102.21
(17.56)

5.22
(4.05)

10.67
(7.1)

89.89
(29.83)
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4.2. Rs-fcMRI

Acquired functional imaging series underwent well described and
widely usedpreprocessing steps converted to aNipype (Gorgolewski et al.,
2011)workflow tominimize artifacts and spurious noise (Fair et al., 2007,
2009, 2012; Mills et al., 2012; Costa Dias et al., 2013). Three resting-state
functional MRI scans were attempted (5min each for a maximum of
15min of resting state data) for each subject using standard acquisition
techniques (EPI sequence: TR¼ 2500ms, TE¼ 30ms, FA¼ 90�, 3.8mm3

voxels, 36 slices, FOV¼ 240� 240mm). Of the 133 subjects, 87 had a full
15min of resting state data (360 TRs), and 46 had 10min of resting state
data (240 TRs). Standard preprocessing methods included slice time
correction, debanding, rigid body head motion correction, and
within-series signal intensity normalization to a whole-brain mode value
of 1000. Anatomical T1-weighted MPRAGE images were resampled and
transformed to standard Talairach atlas space (Talairach and Tournoux,
1988) and used for co-registration of the functional series. Connectivity
preprocessing included detrending the functional signal, removal of
nuisance regressors (Friston et al., 1996; Power et al., 2013), and (iii)
temporal low-pass filtering (f> 0.1 Hz) via second order Butterworth fil-
ter. Nuisance regressors applied in step (ii) of connectivity preprocessing
consisted of: (a) movement from 3 rotational and 3 translational param-
eters obtained in the previous rigid body head motion step, (b) the global
whole-brain functional signal, (c) the averaged ventricular signal, and (d)
first-order whole-brain, ventricular, and white matter derivatives (Fair
et al., 2013; Power et al., 2013). Additionally, all imaging data were
visually inspected upon preprocessing completion to exclude series with
unsatisfactory co-registration or significant blood-oxygen-level depen-
dent (BOLD) signal dropout. Additionalmovement correctionwas applied
utilizing a framewise-displacement (FD) threshold of 0.3mm, following
methods described by Power and colleagues (Power et al., 2013; Power
et al., 2011). Observations identified as having highmotionwere replaced
with a “missing” placeholder so that temporal ordering was maintained.
Children who had at least 60% of TRs remaining after scrubbing were
retained in this analysis (resulting in a minimum of 216 TRs for a 15min
session, and158 TRs for a 10min session). Before scrubbing thediagnostic
subgroups were marginally different in their frame displacement (F(3,
129)¼ 2.23, p¼ .08). After scrubbing at 0.3, there were no differences
between subgroups in terms of frame displacement (F(3, 129)¼ 0.6,
p¼ .61). Additionally, there was no correlation between age and frame
displacement, either before or after scrubbing (r ¼ � :04; :008; p ¼ :58;
:92). Table 2 below shows motion and TR related information.
Table 2
Motion information. Mean (SD). FD is framewise displacement.

Group FD FD After Scrub Remaining TRs

TDC 0.14 (0.05) 0.11 (0.03) 284.11 (59.29)
ADHD-I 0.17 (0.07) 0.12 (0.02) 270.44 (61.1)
ADHD-C 0.17 (0.09) 0.12 (0.03) 267.35 (58.75)
ASD 0.15 (0.06) 0.12 (0.03) 281.55 (55.74)
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4.3. Parcellations and functional networks

Timecourses were calculated as the average signal within the ROIs
defined by the parcellation schemas by Cary and colleagues (2017). This
parcellation schema defines 79 ROIs using the InfoMap community
detection algorithm (Rosvall and Bergstrom, 2008) applied to the vox-
elwise functional connectivity matrix. These 79 ROIs are divided into 19
functional subnetworks, labeled as follows: Cingulo-Opercular, Default
Mode, Cuneus-Midlingual, Somatosensory-motor, Dorsal Attention,
Lateral Occ and Fusiform, Frontoparietal Task Control, Hippocampus,
Salience, Temporal Pole, Superior Temporal, Ventral Attention, PCC
Borders, Head. Hippocampus, Temporal Occipital Junction, OFC, Frontal
Pole, Post OFC and Ventral Lateral Prefrontal. The ROIs are irregularly
shaped but non-overlapping and only contain grey matter voxels. For
visualizations of all ROIs used, see Supplementary Materials. In the
present analysis we selected only ROIs that were members of the Default
Mode Network (DMN), Salience and Ventral Attention. The total number
of ROIs used is 20, and MNI coordinates for the centroid of the ROI along
with anatomical labels are provided in Table 3. ROI AAL label and
Brodmann area are classified based on centroid locations are visualized
in Fig. 1. A voxelwise visualization of the parcellation is provided in the
Supplementary Materials.

4.4. CS-GIMME

CS-GIMME was run on the dataset using a 0.75 threshold for both
group and subgroup level edges. Subgroup labeling corresponded to
clinical group, resulting in four total subgroups with nearly identical
sample sizes both in terms of number of TRs and participants. CS-GIMME
produces primarily two sets of applicable results for inquiries regarding
subgroup differences. The first are group level edge coefficients, which
are estimated for each subject and allow comparisons of connectivity
strength of group edges between all subgroups. The second set of results
are in the subgroup level edges. These edges are estimated for all subjects
within a particular subgroup. It is important to note that these edges are
not necessarily exclusive to a subgroup, as several subgroups might have
several of the same subgroup edges. Furthermore, subgroup edges can be
estimated as individual level edges for specific participants. CS-GIMME
as an extension of GIMME also produces several other sets of output
that are not examined in this study. For example, in addition to group and
subgroup level edges, individual level edges are estimated, allowing good
model fits to be obtained for every subject. These edges can be examined
to see if there are additional (but less common) commonalities within
subgroup, but this strategy was not pursued here. CS-GIMME additionally
produces participant level model fit information, as well as plots of
connectivity patterns for the convenience of the analyst. Figures in this
study were produced using BrainNet Viewer (Xia et al., 2013). Note, ROIs
are represented visually as small spheres at the central point of the ROI to
provide better visualization of the edges.

4.5. Group-level edge analysis

As group level edges were estimated for all subjects, the distribution
of estimates will be approximately normal. Hence the strength of these
edges can be compared between subgroups. In this study, simple linear
regression models were fit to each edge, comparing the edge strength of
each clinical subgroup (ADHD-C, ADHD-I, ASD) to the TDC subgroup.
The Benjamani-Hochberg correction for multiple comparisons (Benja-
mini and Hochberg, 1995) was used to adjust each subgroup comparison
across all edges tested. This type of analysis can be extended to account
for subject level demographics or any other subject level variable of in-
terest, as the edge strengths are calculated on a per subject basis.
Group-level analysis is performed only on the contemporaneous paths. As
the data is being sampled at a rate slower than the actual underlying
phenomena, the relations between the ROI timeseries may be best
captured in the contemporaneous edges, once the lagged relations are



Table 3
ROI centroid locations and labels.

Node Label Network X Coord Y Coord Z Coord AAL Label Brodmann Area

1 DMN �14 35 33 Frontal_Sup_L Left BA9
2 DMN �45 �67 31 Angular_L Left BA39
3 Ventral Attention �49 33 3 Frontal_Inf_Tri_L Left BA45
4 Salience 33 22 �8 Insula_R Right Insula
5 DMN 12 40 28 Frontal_Sup_R Right BA9
6 DMN 58 �15 �19 Temporal_Mid_R Right BA21
7 DMN 39 31 �16 Frontal_Inf_Orb_R Right BA47
8 DMN 4 �54 29 Precuneus_R Right BA31
9 Ventral Attention 50 26 6 Frontal_Inf_Tri_R Right BA45
10 Salience �8 25 30 Cingulum_Ant_L Left BA32
11 Salience �32 19 �9 Insula_L Left Insula
12 Salience �26 43 27 Frontal_Mid_L Left BA10
13 Salience 7 28 29 Cingulum_Ant_R Right BA8
14 Salience 25 46 29 Frontal_Mid_R Right BA9
15 DMN 43 �64 32 Angular_R Right BA39
16 DMN �52 22 11 Frontal_Inf_Tri_L Left BA45
17 DMN �7 �55 29 Precuneus_L Left BA31
18 Ventral Attention �49 16 9 Frontal_Inf_Oper_L Left BA44
19 DMN �40 31 �14 Frontal_Inf_Orb_L Left BA47
20 DMN �58 �18 �18 Temporal_Mid_L Left BA21

Fig. 1. ROI Centroid Coordinates. Color corresponds to functional network, with red being the default mode network, yellow being the ventral attention network and
green being the salience network.

T.R. Henry et al. NeuroImage 188 (2019) 642–653
taken into account (Granger, 1969). Furthermore, previous work exam-
ining the performance of causal search algorithms suggest that only
methods that used contemporaneous connections recovered the correct
data generating models (Smith et al., 2011). As such, we restrict our
group and subgroup level analyses to contemporaneous edges.
4.6. Subgroup-level edge analysis

Subgroup level edges are estimated for all subjects within a particular
subgroup, which makes comparison between subgroups less useful as
some subgroups might not contain that edge resulting in zero-inflated
distributions of estimates. Instead we can examine the presence of
647
common subgroup level edges between subgroups (such as shared edges
between ADHD-I and ADHD-C), as well as if edges are within a functional
network or between a functional network.

Additionally, we perform a permutation analysis to assess the prob-
ability that a given subgroup edge is due to chance. We randomly
permute the subgroup labels, which leads to a new label set with the
same proportion of subjects in a given subgroup as the original subgroup
label set. We then apply CS-GIMME to the data using the permuted label
set and extract any subgroups edges that are estimated. By examining the
number of times a subgroup edge that was detected in the true label set
was also present as a subgroup edge in the permuted label set, we obtain
a measure of how likely a given subgroup edge is simply due to chance. A



Table 4
Group level paths.

From To Edge Type

1 20 Within DMN
2 17 Within DMN
3 18 Within Ventral Attention
4 13 Within Salience
4 11 Within Salience
5 2 Within DMN
2 7 Within DMN
3 1 Ventral Attention to DMN
6 5 Within DMN
7 14 DMN to Salience
8 6 Within DMN
5 19 Within DMN
9 16 Ventral Attention to DMN
10 12 Within Salience
7 3 DMN to Ventral Attention
6 10 DMN to Salience
11 15 Salience to DMN
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higher rate of occurrence suggests that a given path is not truly specific to
a subgroup but is more likely a group level path that was erroneously
classified as a subgroup level path. A low, or zero, rate of occurrence
suggests that a given subgroup level path is specific to the subgroup in
question. We perform this permutation analysis 1000 times.

5. Results

5.1. Group level edges

Fig. 2 shows the common group level edges, as well as the group level
edges with weights that are significantly different than TDC weights for
each clinical group. Table 4 lists all group level paths. Table 5 contains
information about the significantly different group edges (comparing
each clinical subgroup to TDCs) .

There are several notable results apparent from examining subgroup
differences in group level edge magnitudes. The first is the smaller
number of significantly different group edges for individuals with ADHD-
I compared to individuals with ADHD-C, consistent with concerns that
ADHD-I may capture essentially a clinically mild version of ADHD
compared to ADHD-C (Willcutt et al., 2012). Individuals with ADHD-I
exhibited increased connectivity from Region 3, corresponding to BA45
to region 18, corresponding to BA44. These two regions correspond to
the left Broca's area. Additionally, individuals with ADHD-I showed
increased connectivity between Region 8, contained in right precuneus,
and Region 6, contained in the middle temporal cortex. Notably, in-
dividuals with ADHD-C show the same two significant connections, as
well as additional greater connectivity between Regions 2 and 7, and
Regions 2 and 17, both within the DMN, as well as between Regions 10
and 12, and Regions 4 and 11, both within Salience network connections.

Individuals with ASD showed identical patterns of increased func-
tional connectivity as individuals with ADHD-C, with the exception of the
edge between Regions 2 and 17, which is only significant for individuals
with ADHD-C. Finally, across all disorders, the only edges that were
significantly different from typically developing controls were within
network edges, and the difference in connectivity was only ever positive,
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with individuals in the clinical subgroups only showing increased con-
nectivity on edges relative to TDCs. This suggests that aberrant functional
connectivity within functional networks is not only a difference in the
structure but can also be conceptualized as a difference in the strength of
the connections.
5.2. Subgroup level edges

Fig. 3 below shows the subgroup level edges estimated with CS-
GIMME for all sample groups. Table 6 provides average weights and
average standard errors for these edges.

There are several interesting findings from the subgroup edge
detection. To begin, one notable difference between the TDC group and
the clinical groups is that the unique edges to the TDC group are for the
most part within network edges, while the unique edges for the clinical
groups are entirely between network edges. This suggests that functional
connectivity associated with the disordered groups is characterized as
Fig. 2. Comparison of clinical groups to TDC
with regard to group level edge strength. Top
Left Panel shows all contemporaneous group
level edges and directions. Other panels
show significantly different (after BH
correction) group level edges for a given
clinical group compared with the TDC group.
All significantly different edges were stron-
ger in clinical groups. Grey arrows represent
between functional subnetwork edges,
colored arrows represent within functional
subgroup edges. Numerical differences are
presented in Table 5.



Table 5
Significantly different (from TDC) group edges.

From To Edge Type Subgroup Difference (Subgroup -
TDC)

Corrected
p

3 18 Within VA ADHD-I 0.091186 0.003878
8 6 Within DMN ADHD-I 0.081496 0.029656
3 18 Within VA ADHD-C 0.087411 0.000831
2 17 Within DMN ADHD-C 0.047516 0.009066
2 7 Within DMN ADHD-C 0.101253 0.000217
8 6 Within DMN ADHD-C 0.078122 0.000188
10 12 Within

Salience
ADHD-C 0.042201 0.044368

4 11 Within
Salience

ADHD-C 0.048907 0.000135

3 18 Within VA ASD 0.088543 0.00128
2 7 Within DMN ASD 0.102563 0.000357
8 6 Within DMN ASD 0.079133 0.002375
10 12 Within

Salience
ASD 0.042747 0.009066

4 11 Within
Salience

ASD 0.04954 0.011747
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differences in the structure of connections between functional networks
in addition to differences in strengths of common connections. Similarly
to the group edge difference results, individuals with ADHD-I exhibit a
subset of the edges that individuals with ADHD-C exhibit, where ADHD-C
shows involvement with more default mode regions, specifically Region
17, in the left precuneus, and Region 7 in the inferior orbital frontal
cortex. Individuals with ASD show subgroup edges primarily localized to
areas near the right insula, specifically the edge between Region 4,
contained in the right insula, and Region 7, contained in BA47.

Consistent with emerging evidence of a common liability factor
shared across many domains of psychopathology (Pettersson et al., 2018)
and neurodevelopment including ASD and ADHD, two subgroup edges
that appear in all three disorder subgroups, the edge from Region 18 to
Region 20, and the edge between Region 18 and Region 14. Region 18,
Fig. 3. Subgroup specific edges. Each panel shows edges that are specific (though n
subnetwork edges, while colored edges represent within functional subnetwork ed
subnetwork, while clinical groups exhibit subgroup paths between functional subne
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again, is contained in the left BA44, part of Broca's area, while Region 20
encompasses the left middle temporal cortex, while Region 14 is con-
tained in the right middle frontal cortex.

The permutation analysis (Table 6) suggests that subgroup level paths
indicated for clinical subgroups are specific to the given subgroup la-
beling, as they did not appear as subgroup level paths when the subgroup
labeling was permuted randomly. One paths that was indicated for the
TDC subgroup appears to be less robust, specifically the path from ROI 14
to 5. This suggests that this path was close to being considered a group
level path and is not specific to the TDC group.

6. Discussion

GIMME is a search algorithm that consistently and reliably recovers
data-generating edges in benchmark simulated data that emulates func-
tional connectivity maps (e.g., Smith et al., 2011). It does so by detecting
signal from noise in a manner that does not assume homogeneity across
individuals. Prior work had arrived at data-driven subgroups within the
GIMME framework (termed, S-GIMME) and found that adding edges
from using the S-GIMME approach worked well even on these smaller
sets of individuals (Gates et al., 2017; Lane et al., In Press). However,
until researchers could not specify a priori which subgroup each indi-
vidual was in. This proved to be a hindrance to researchers with targeted
areas of foci who wanted to compare specific groups. Hitherto, re-
searchers would have to run GIMME separately on these subgroups of
interest to obtain the edges specific to that subgroup. Now, with
CS-GIMME, researchers can capitalize on the similarities that may exist
for the sample at large by obtaining group-level edges for the whole while
also obtaining subgroup-specific edges should they exist.

Broadly speaking, CS-GIMME has a series of advantages over more
general methods for analyzing functional connectivity. As it is a variant
of the GIMME algorithm, it brings the advantages of appropriately
analyzing individual heterogeneity, while extracting group level directed
functional connectivity edges common across the sample. Furthermore,
ot necessarily unique) to each group. Grey arrows represent between functional
ges. Note that TDC specific subgroup edges were primarily within functional
tworks.



Table 6
Subgroup level edges.

From To Edge Type Subgroup Mean Beta Mean SE Permute %

18 16 VA to DMN TDC 0.605 0.062 0
3 9 Within VA TDC 0.383 0.054 7
2 1 Within DMN TDC 0.354 0.039 0
17 8 Within DMN TDC 0.866 0.043 0
5 1 Within DMN TDC 0.554 0.043 0
8 15 Within DMN TDC 0.610 0.056 .3%
6 20 Within DMN TDC 0.470 0.045 0
11 10 Within Sal TDC 0.311 0.049 0
10 13 Within Sal TDC 0.578 0.055 0
14 5 Sal to DMN TDC 0.292 0.042 16%
14 12 Within Sal TDC 0.470 0.052 .02%
13 14 Within Sal TDC 0.342 0.053 3.6%
18 20 VA to DMN ADHD-I 0.218 0.031 0
18 14 VA to Sal ADHD-I 0.313 0.035 0
16 4 DMN to Sal ADHD-I 0.400 0.068 0
18 20 VA to DMN ADHD-C 0.275 0.034 0
18 14 VA to Sal ADHD-C 0.302 0.035 0
16 4 DMN to Sal ADHD-C 0.279 0.045 0
14 17 Sal to DMN ADHD-C 0.320 0.053 0
4 7 Sal to DMN ADHD-C 0.192 0.03 0
18 20 VA to DMN ASD 0.176 0.03 0
18 14 VA to Sal ASD 0.291 0.037 0
4 7 Sal to DMN ASD 0.227 0.04 0
13 9 Sal to VA ASD 0.427 0.076 .09%
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the confirmatory aspect of the method allows researchers to analyze
specific functional hypotheses, involving a priori defined groups. As was
shown in the empirical example, the results gleaned from the CS-GIMME
method can be analyzed post hoc, allowing for researchers to examine
differences and similarities among groups in both strength of functional
connectivity for group level edges, and presence or absence of subgroup
level edges. Finally, though not performed in this study, CS-GIMME
produces individual, sparse functional connectivity networks suitable
for further network analysis, such as with a network neuroscience
framework (Bassett and Sporns, 2017). As CS-GIMME explicitly models
subgroup differences, network analysis based on these networks will
reflect subgroup differences in overall topology more so than a more
uninformed network construction method.

The importance of generating functional connectivity patterns that
truly capture individuals' brain processes is an important step to under-
standing human cognition and emotions. Recently, obtaining subject-
specific functional connectivity maps has been highlighted as a major
goal in the field, with efforts such as “fingerprinting” originally defined
by our group (Miranda-Dominguez et al., 2014; Miranda-Domínguez
et al., 2017), amongst others (Finn et al., 2015), and other analytic
methods for individual-level analysis being at the forefront (Gordon
et al., 2017; Laumann et al., 2015; Ramsey et al., 2011; Smith et al., 2011;
Smith, 2012). Subject-specific functional connectivity maps are particu-
larly critical for moving towards the use of MRI and related methods in
personalized medicine. Still, among the nuances seen when looking
across individuals there typically are also some similarities. This may be
partly due to physiological constraints of the brain, and thus there may be
some edges that exist for most people regardless of their classifications.
CS-GIMME provides a reliable method for investigating connectivity
across and within subgroups in a manner that attends to individual
nuances.

6.1. Empirical findings unique and interesting to ADHD

These findings both support findings from previous literature and
suggest several new productive avenues of research. The first finding of
note is that ADHD-I appears to involve a subset of the disrupted func-
tional connectivity seen in individuals with ADHD-C, and specifically
does not show the same involvement of more midbrain DMN regions,
such as the precuneus, as evidenced by different subgroup edges. This is
consistent with previous findings suggesting that ADHD-C shows more
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atypical connectivity in midline default mode network regions compared
to ADHD-I (Fair et al., 2013). It is also consistent with concerns that
ADHD-I as defined in the DSM largely captures a milder subset of ADHD
than ADHD-C (Willcutt et al., 2012). Furthermore, the increased con-
nectivity from the left BA45 (Region 16) to the right insula (Region 4) is
consistent with previous findings of disrupted functional connectivity in
the insula found in individuals with ADHD (Zhao et al., 2017), however
no research to date has specifically examined subtype differences in
insular functional connectivity.
6.2. Empirical findings unique and interesting to ASD

In this sample, individuals with ASD were distinguished from TDCs
and both ADHD subtypes by unique subgroup edges primarily localized
around the right insula, with increased connectivity between the right
insula (Region 4) and right BA47 (Region 7), as well as increased con-
nectivity between the right anterior cingulate (Region 13) and the right
BA45 (Region 9). Previous research has implicated both the insula and
the ACC, in their roles as components of the salience network, in ASD (Di
Martino et al., 2009; Uddin and Menon, 2009), and these findings are
consistent with that. Recent research has found that functional connec-
tivity of language processing regions is disrupted in individuals with ASD
(Lee et al., 2017; Verly et al., 2014), and the current study suggests that
there is increased connectivity between the salience network and lan-
guage processing regions. We did not separately consider ASD with and
without ADHD for several reasons. The first is that splitting the ASD
group in two leads to a corresponding reduction in power and increase in
complexity. The second is that splitting the ASD group leads to unbal-
anced group sizes, which changes the interpretability of the subgroup
path threshold parameter. For more on this, see the Using CS-GIMME
section later in the discussion. Prior work suggests that a separate anal-
ysis of ASD with and without comorbid ADHD will clarify which features
of overlap are attributable to co-occurring ADHD in the ASD group
(Karalunas et al., 2018) and we encourage future research to examine
this.
6.3. Commonalities across disorders

Finally, CS-GIMME allows for the comparison of the similarities be-
tween clinical subgroups as well as TDCs. For one, the group-level edges
suggest that those connections may be generalizable to the population as
the majority of individuals, regardless of subgroup, had those edges in
their models. In addition to these, a number of similar patterns emerged
among the clinical subgroups. For instance, ADHD-C and ASD showed
similar patterns of increased connectivity in group edges and were pri-
marily distinguished by different subgroup level edges. The commonal-
ities between the group edge differences is likely due to the presence of
comorbid ADHD in the ASD group, which makes the unique edges pre-
sented by the ASD group particularly salient. Additionally, all three
clinical subgroups shared the same two edges from Region 18 to Region
20 and Region 14. The centroid for Region 18 is in left BA44 and can be
alternately classified as part of the left inferior frontal gyrus, while Re-
gion 20 encompasses a large part of the left temporal lobe, with the
centroid contained in the left BA21, Region 14 is contained primarily in
right BA9 and more generally the frontal middle gyrus. While left BA44 is
a component of Broca's area, and is related to semantic processing, the
left BA21 plays a role in auditory processing of language, while right BA9
is related to attention, particularly related to auditory attention. This
pattern of findings hints at a shared disruption in auditory and language
processing across all three disorders, suggesting that a further investi-
gation of both functional and structural aberration of these regions might
further clarify their relation to these disorders. Such findings could
provide clues to general liability factors for frequently-comorbid neuro-
developmental disorders.
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6.4. Directionality of paths

CS-GIMME estimates directed functional connectivity, and the
directionality of these paths can be used to understand how ROIs and
functional subnetworks interact with one another. Previous work using
Granger causality has shown that in healthy adults the default mode
network exerts greater influence on various task positive networks,
rather than the other way around (Uddin et al., 2009), while elements of
the salience network, specifically the right anterior insula, appears to
have a causal role in switching between the central executive network
and the default mode network (Menon and Uddin, 2010). There has been
no work we are aware of that examines differences in the directionality of
the DMN to other network relation in individuals with ADHD or ASD, and
there has only been a few recent articles examining directional connec-
tivity differences in ASD. Notably, Bernas et al. (2018) showed that the
causal connectivity from the ventral attention network to salience and
executive network regions is weaker in males with high functioning
autism.

The directionality of the paths in the empirical analysis suggest the
influence of the default mode network on the ventral attention network
and salience network is disrupted in both ADHD and ASD. Specifically,
the majority of between network subgroup paths originated from the
VAN or Salience network, rather than the DMN, and many of those paths
were to the DMN. This is contrasted to the estimated group level paths,
many of which were from the DMN to the VAN or Salience networks. This
increase in bi-directional between network relations in the clinical sub-
groups suggests that while between network connectivity is increased in
clinical subgroups, this increase is explicitly direction, e.g. we cannot say
that one network is exerting more influence over another for individuals
with ADHD. Instead, the directionality of between network connections
is less well structured in our clinical subgroups.

An analysis of the directionality of paths is best suited for a more
restricted ROI set where researchers have a priori hypotheses regarding
differences in direction and strength of edges between ROIs. For example,
given previous work on ADHD, a natural application of CS-GIMMEwould
be to examine differences in DMN to task positive network path direc-
tionality and strength for individuals with ADHD vs. healthy controls. As
previous literature suggests that the regulatory influence of the DMN is
reduced in children with ADHD, it would be interesting to examine if
there is any change in the directionality of between network edges, and
which ROIs those are specifically associated with.
6.5. Using CS-GIMME

To provide guidance to researchers interested in using CS-GIMME, we
want to summarize several important decision points here. The first is
determining if one's own dataset is appropriate to use with CS-GIMME.
An important assumption of the confirmatory subgrouping component
of CS-GIMME is that within a subgroup, all subjects have the same set of
subgroup level paths. What counts as a subgroup level path is determined
by the subgroup threshold tuning parameter. Researchers can use this
parameter to reflect the level of heterogeneity they are willing to allow in
their subgroup paths. For example, when analyzing a demographically
matched group of clinical patients who are fairly homogeneous in their
symptom expression, the use of a high subgroup path threshold can lead
to the estimation of a consistent set of subgroup paths. On the other hand,
if one's sample consists of a highly heterogenous set of subjects, a high
subgroup path threshold could lead to very few subgroup paths being
estimated. Another consideration in determining the subgroup path
threshold is the size of the subgroups. In small subgroup sizes, a low
subgroup threshold could lead to results that reflect sampling variability
and would not reflect the groups under study. This is a particular concern
for unbalanced group sizes. A general rule of thumb is that the subgroup
path threshold should increase with both increasing group size as well as
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increasing theoretical homogeneity within the groups. In all cases, re-
searchers should report and justify the subgroup path threshold value.
Model based methods of selecting the subgroup path threshold value are
an active area of methodological research.

A second aspect of CS-GIMME that researchers should consider is the
ability to include a priori paths. While our empirical example does not
explore CS-GIMME's (or more generally GIMMEs) ability to test a priori
hypotheses, researchers can propose that certain paths exist at the group
or subgroup level before the algorithm is applied. For example, if one's
interest is in testing between network connectivity, it would be reason-
able to propose that all ROIs within a functional subnetwork are con-
nected. We propose researchers with strong a priori hypotheses fit CS-
GIMME models with and without the a priori paths and compare the
relative performance of these models subject by subject using BIC values.
Expanding GIMME's a priori hypothesis testing capabilities is also an
active area of research.

Finally, we have included example code in the Supplementary Ma-
terial for researchers to use or adapt to perform the group level signifi-
cance tests.

6.6. Limitations and future directions

There are, of course, several limitations to both the empirical example
presented here, as well as CS-GIMME more broadly. The specific par-
cellation and choice of the default mode network, salience network and
ventral attention network was informed by prior literature, but a
different choice of functional networks would lead to different findings.
Specifically, given findings suggesting that the interactions between the
DMN and executive control networks (ECN; Seeley et al., 2007) are
altered in ADHD (for review see: Rubia, 2018), we suggest that re-
searchers include ROIs in both the DMN and ECNs in future applications
of CS-GIMME on individuals with ADHD. CS-GIMME is not a whole brain
algorithm due to computational constraints and requires researchers to
choose specific regions of interest to analyze. The choice of these regions
will impact results. This is due to CS-GIMME, and GIMMEmore generally
modeling functional connectivity of the network as a complete whole,
and so analysis using CS-GIMME needs to consider each ROI set used as a
distinct analysis. Finally, CS-GIMME is computationally intensive, with
rapid increase in the time taken to analyze a sample when both the
number of ROIs and the number of subjects increases. This however can,
and will, be alleviated with further methodological developments.

Confirmatory Subgrouping GIMME is a powerful new tool for re-
searchers to use to examine differences in directed functional connec-
tivity between a priori defined subgroups, and one that is grounded in the
well validated GIMME algorithm. Further extensions of GIMME such as
latent variable modeling of functional networks, improvements in esti-
mation methods, implementation of HRF functions and dynamic
modeling of functional connectivity will all further improve the capa-
bilities of CS-GIMME in the near future and continue to improve its
usefulness in studying directed functional connectivity differences in
both clinical disorders, as well as subgroups of healthy controls.
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