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Abstract 

Researchers across many domains of psychology increasingly wish to arrive at personalized and 

generalizable dynamic models of individuals’ processes. This is seen in psychophysiological, 

behavioral, and emotional research paradigms, across a range of data types. Errors of 

measurement are inherent in most data. For this reason, researchers typically gather multiple 

indicators of the same latent construct and use methods, such as factor analysis, to arrive at 

scores from these indices. In addition to accurately measuring individuals, researchers also need 

to find the model that best describes the relations among the latent constructs. Most currently 

available data-driven searches do not include latent variables. We present an approach that builds 

from the strong foundations of Group Iterative Multiple Model Estimation (GIMME), the 

idiographic filter, and model implied instrumental variables with two-stage least squares 

estimation (MIIV-2SLS) to provide researchers with the option to include latent variables in their 

data-driven model searches. The resulting approach is called Latent Variable GIMME (LV-

GIMME). GIMME is utilized for the data-driven search for relations that exist among latent 

variables. Unlike other approaches such as the idiographic filter, LV-GIMME does not require 

that the latent variable model to be constant across individuals.   This requirement is loosened by 

utilizing MIIV-2SLS for estimation. Simulated data studies demonstrate that the method can 

reliably detect relations among latent constructs, and that latent constructs provide more power to 

detect effects than using observed variables directly. We use empirical data examples drawn 

from functional MRI and daily self-report data. 

 Keywords: SEM, GIMME, latent variables, idiographic filter, MIIV-2SLatent-Variable 

GIMME 
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The frequent and increasing use of time series data in psychological research, such as 

psychophysiological, in-vivo self-report, and passive data collection from digital devices, 

provides researchers with newfound possibilities to model behavioral, emotional, and cognitive 

processes as they unfold uniquely for each individual. With these data researchers can quantify 

the interplay of individual-level attributes (e.g., moods; behaviors; brain processes) in real time 

to better understand if, for a given individual, they co-occur or if one precedes the other. Time 

series data have been used to demonstrate heterogeneity in many processes when looking across 

individuals, such as brain functioning (Laumann et al., 2015; Price, Gates, Kraynak, Thase, & 

Siegle, 2017), social behaviors (Beltz, Beekman, Molenaar, & Buss, 2013), and symptoms 

revealed via self-reports (Bringmann, Ferrer, Hamaker, Borsboom, & Tuerlinckx, 2018; Rubel, 

Fisher, Husen, & Lutz, 2018). Importantly, these data help to bridge the gap between idiographic 

and nomothetic research (Beltz, Wright, Sprague, & Molenaar, 2016; Wright & Hopwood, 

2016), while also moving the field closer towards the use of individual-level analysis to inform 

clinical psychological practice (Fernandez, Fisher, & Chi, 2017; Fisher & Boswell, 2016).  

At this nascent stage of quantitative discovery into human processes researchers often do 

not have clear hypotheses driving what might be expected to hold true for all individuals (i.e., the 

nomothetic level) let alone the appropriate model for a given individual (i.e., idiographic or 

personalized level). Further hindering progress is the lack of robust methods for analyzing this 

new type of data. There has been success in developing data-driven methods for arriving at 

individual-level models of processes among observed variables (Epskamp et al., 2018; Gates & 

Molenaar, 2012; Henry & Gates, 2017; Ramsey, Hanson, & Glymour, 2011). A remaining 

analytic hurdle to the model-building process is that the actual measurement of underlying latent 

constructs may differ across individuals (Hamaker, Dolan, & Molenaar, 2005; Molenaar & 
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Campbell, 2009; Nesselroade, Gerstorf, Hardy, & Ram, 2007). Methods are needed that allow 

for variation in the measurement model (also referred to elsewhere as “factor model”) as well as 

the temporal relations among these latent variables (i.e., the “latent variable model”). The present 

paper introduces a person-specific model building approach, Latent-Variable Group Iterative 

Multiple Model Estimation (LV-GIMME) that is optimal for use on time series data such as 

those often obtained in psychological studies. LV-GIMME operates from within a structural 

equation modeling (SEM) framework for dynamic factor analysis (DFA; Molenaar, 1985) and 

uses model-implied instrumental variables with two-stage least squares (MIIV-2SLS; Bollen, 

1996) for estimation.  The synthesis of these two lines of research has been provided in the 

development of the MIIV-2SLS for estimating dynamic factor models at the individual level has 

already been provided by Fisher, Bollen and Gates (2019).   

GIMME (Gates & Molenaar, 2012) is a data-driven method for arriving at patterns of 

directed relations among variables across time. Developed initially for use with functional MRI 

data, the algorithm is increasingly used with behavioral and psychological data gathered across 

time. It is an appropriate approach for time series data of at least 60 observations per person 

(Lane, Gates, Pike, Beltz, & Wright, 2017) and fewer than 25 variables. At the core of the 

GIMME algorithm is the notion that individuals may have some common and unique aspects of 

their dynamic processes. To avoid the risk of overfitting by conducting solely individual-level 

model searches, GIMME begins by first identifying which relations among variables, if any, 

exist for the majority of participants as indicated by significance tests of the modification indices 

(or Lagrangian multiplier diagnostics, see Sörbom, 1975?) for candidate relations. Importantly, 

GIMME does not simply aggregate across people; instead it only considers a path as existing for 

the majority of individuals if it is significant for the majority of individuals. Following the group-
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level search, which serves to detect signal from noise, the algorithm uses these relations that 

were typically found across individuals in the sample as the starting point for individual-level 

searches. Again, modification indices guide this search. The model search stops for each 

individual when fit indices indicate adequate model fit, thus favoring parsimony. This method of 

first detecting signal from noise to obtain starting models closer to the individuals’ true models 

has been shown to provide more reliable results than methods which conduct searches on the 

individual level (Gates & Molenaar, 2012). Similar to many directed graph searches, GIMME 

only has been evaluated for use with observed variables.  

Integrating a measurement model component into GIMME requires sensitivity to the 

possibility that individuals may differ in the structure and/or estimates. At its most extreme, 

some analytic approaches require that all individuals have the same measurement and latent 

variable models when modeling dynamic processes. This is seen in the vertical concatenation of 

individuals’ time series data or averaging covariance matrices prior to analysis. For instance, in 

functional MRI (fMRI) brain research it is common to concatenate individuals’ data (or 

equivalently average covariance matrices) to arrive at one sample-level data set.1 Researchers 

here are often interested in assessing how brain regions covary together across time. For this 

reason, a standard approach is to conduct Principal Components Analysis (PCA) on time series 

data that have been concatenated across individuals to arrive at latent components that reflect 

aspects of thought. These latent constructs are referred to as “brain networks”. Brain networks 

represent disparate brain regions that tend to covary across time together. As an example, the 

Fronto-Parietal Network is a collection of brain regions that tend to covary during tasks that 

                                                             
1 It must be noted that this approach is largely unnecessary since typically each individual in 
these studies provides ample numbers of time points to be considered at the individual level (i.e., 
T = 200-1000 observations for each time window of interest). 



LV-GIMME 

 

6 

require attention. The same brain networks have been consistently found (to some extent) across 

individuals (Wisner, Atluri, Lim, & MacDonald, 2013), suggesting that perhaps aggregating 

across individuals to arrive at a model of latent components may be appropriate here.  

Still, individuals vary in the estimates of the relations comprising these components (as 

seen in Gonzalez-Castillo et al., 2015), and analytic methods that incorporate this level of 

personalization are needed. Similarly, psychological studies using daily self-reports typically use 

scales that were originally developed for cross-sectional data. From this, they arrive at measures 

of latent constructs for individuals across time and assume that individuals can be measured the 

same. Since the inception of the use of time series data in psychology (such as daily self-reports) 

it has been demonstrated that individuals can vary in their measurement model structures 

(Lamiell, 1981; Molenaar, 2004; Molenaar & Campbell, 2009). More recent work highlights that 

reliability for scales across people (i.e., cross-sectionally) does not inform the reliability of scales 

across time for one individual such as in time series data (Fuller-Tyszkiewicz et al., 2017; Hu et 

al., 2016). All this suggests that personalized assessments via individual-level measurement 

models are needed.  

There is a precedent for allowing personalized measurement models. Nesselroade and 

colleagues (2007) developed the concept of an Idiographic Filter. The idiographic filter allows 

for the measurement model structure and factor loadings to vary across individuals.  Molenaar 

and Nesselroade (2012) extended the idiographic filter for use with dynamic factor models 

(DFM; Molenaar, 1985), which allows for directed relations among the latent variables. 

Critically, these efforts require that the latent variable model, defined here as the structure of 

relations among the latent variables, remain invariant across individuals both in terms of the 

pattern and estimates. However, it is possible (and indeed likely) that individuals vary both in the 
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measurement of constructs as well as the relations among constructs. As a motivating example, 

depression has been found to relate to anxiety in cross-sectional studies (Sartorius, Üstün, 

Lecrubier, & Wittchen, 1996). However, how depression relates to anxiety may differ across 

individuals when looking across time. For one person depression may be related to feeling 

anxiety the day before, suggesting that their depressive symptoms are a consequence of anxiety. 

For another person it may be opposite, with their depression levels predicting anxiety on 

subsequent days. Hence for both people, the latent variable models for “depression” differ. Yet 

another person could have no temporal relation between depression and anxiety and have their 

depression caused by an entirely different mechanism. Allowing for models where the presence 

and directions of relations among latent variables can differ will better assist researchers and 

practitioners in identifying models that truly describe the individuals.  

This paper demonstrates that the requirement that the latent variable model must be 

constant across individuals, dictated by the idiographic filter can be loosened when utilizing 

MIIV-2SLS for estimation. MIIV-2SLS estimation has a number of benefits that are outlined in 

detail below. The most noteworthy advantage for this problem is that when using MIIV-2SLS 

the structure and estimates obtained in the latent variable model have no impact on the parameter 

estimates in the measurement model (Bollen, Gates, & Fisher, 2018). Thus, analytically it is 

irrelevant if individuals differ in their latent variable models. Specifically, we could hold all 

latent variable model structures and estimates to be constant across individuals (as is done in the 

idiographic filter) or not; either way, the measurement model parameter estimates for each 

individual remains unchanged. This is a stark contrast to full information estimators such as 

Maximum Likelihood (ML), wherein values at the latent variable model level may influence the 

estimates of the measurement model coefficients. In utilizing MIIV-2SLS as one possibility for 
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estimating latent scores across time, LV-GIMME allows for individual-level relations in all 

aspects of the DFM without sacrificing meaning and interpretability of the models.  

The structure of the paper is as follows. Throughout the paper we utilize a fMRI data 

example. Following a brief introduction to this data set we describe the integration of latent 

variable models into GIMME using multiple approaches for quantifying the latent construct to 

create LV-GIMME. LV-GIMME is a data-driven method that arrives at group, subgroup (if 

desired), and individual-level relations among latent variables. Importantly, this approach allows 

for individuals to have unique measurement models, both in terms of structure (qualitative) and 

weights (quantitative). We then utilize simulations to demonstrate acceptable recovery rate of 

group- and individual-level paths. These simulations are informed by the fMRI results as well as 

additional conditions. Since MIIV-2SLS offers a number of benefits in addition to those already 

noted, the final step is to estimate the individual-level models with this estimator. We provide 

details relevant for the present purpose as well as outline the benefits. Finally, we demonstrate 

the method with a previously used empirical data example described in Lebo & Nesselroade 

(1978). Throughout this paper we refer to other references for the more technical details on the 

GIMME procedure and the MIIV-2SLS estimator in order to make this paper more accessible to 

readers.  

Functional MRI (fMRI) Data Example 

Human fMRI brain data serves as a proxy for neuronal activity. Technically, it is a 

measure of oxygenation levels in the blood that change in response to neuronal activity 

(Logothetis, 2008). A large number of time points are typically collected for each individual 

(e.g., > 150), thus enabling investigation into how the brain regions relate to each other across 

time.  
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These data serve as an optimal example since the structure of how brain regions relate to 

latent aspects of thought processes (i.e., the measurement model) is largely considered to be 

consistent across individuals (Wisner et al., 2013). However, the values of the loadings, or how 

the observed fMRI data for a brain region relates to a latent brain network, is known to vary 

across individuals (Laumann et al., 2015). Hence for this example we consider the individuals to 

be qualitatively homogenous by having the same measurement model structure yet quantitatively 

heterogeneous by allowing the factor loadings to differ (although having different structures is 

permitted in the LV-GIMME algorithm).  

For exemplar purposes preprocessed data were obtained from the Autism Brain Imaging 

Data Exchange (ABIDE; Di Martino et al., 2014). We selected a sample individuals from one of 

the sites that provide data to the ABIDE project (N=34). As noted above, in the fMRI literature a 

brain network is defined as a cluster of brain regions that tend to covary across time and thus 

reflects some latent aspect of thought, cognition, or emotion2. Considering brain brain networks 

as latent variables has been done previously with cross-sectional brain data (Bolt et al., 2018). 

We extend this line of thought by considering each brain network (i.e., latent construct) as 

comprising brain regions that tend to correlate across time.  The observed indicator variables are 

“brain regions of interest.” To define which brain regions belonged to which brain network we 

used the Dosenbach brain atlas (Dosenbach et al., 2010). Each brain region loads exclusively on 

one brain network. Brain region to network membership was spread across ten networks, of 

which we used the (1) default mode, (2) fronto-parietal, (3) cingulo-opercular, (4) sensorimotor, 

(5) cerebellum,  and (6) occipital networks. The number of observed variables (i.e., brain 

                                                             
2 The use of the word “network” when describing brain networks is not the same as how the 
word network is used in network theory.  
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regions) varied for each brain network and ranged from 18 to 34 (M=26.7, SD = 7.1) for a total 

of 160 brain regions. The number of observations for each individual was T = 246. Across 

participants, after linear detrending the average value for the data was 0 (SD = 3.5). Due to 

preprocessing steps that are common in fMRI (see Appendix A) the data are normally distributed 

and weakly stationary (i.e., the mean and variance is constant) across time with cyclical trends 

removed.  

For this running example we use the same measurement model structure (i.e., which brain 

regions load onto which networks) for all individuals but allow the estimates to be unique for 

each individual. The mapping of brain regions to networks used here is provided by the creators 

of the brain atlas and is generally accepted (Dosenbach et al., 2010).  In these definitions of 

networks each observed variable (brain region) loads only onto one latent variable (brain 

network) as is conventional in fMRI literature and outlined in the atlas description of brain 

regions.  This convention could be relaxed as needed for individuals by having some brain 

regions load on more than one network. For our second empirical example, we use daily self-

report and allow for the measurement model structures to vary across individuals to offer the 

readers a demonstration of this type of structural invariance.  

LV-GIMME with Latent Variables 

In what follows we show that LV-GIMME performs well whether or not there is a 

common measurement model structure for individuals. The LV-GIMME approach involves 

using data in the form of latent variables, such as sum scores, components, or factor score series, 

as inputs to GIMME. Data are aggregated across brain networks to arrive at scores of “latent” 

constructs across time as a first step. Subsequently these latent score time series are used as 

inputs, or variables, in the traditional GIMME algorithm. There are a number of options for 
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arriving at latent series. One is to conduct factor analysis via pseudo-ML3 or MIIV-2SLS and 

then use the resulting estimates to obtain factor series across time for each individual in the 

sample. Another approach is to simply add the values of indicators at each time point, thus 

obtaining sum scores for the latent constructs. Using PCA, one can arrive at a weighted sum 

score series which can then be used as a proxy for the latent construct. The LV-GIMME 

algorithm with these options available is publicly available within the gimme package (Lane, 

Gates, Fisher, & Molenaar, 2018) for R (R Core Team, 2018). As a final step, parameter 

estimates are obtained using MIIV-2SLS via the R package MIIVsem (Fisher, Bollen, Gates, & 

Rönkkö, 2018) for reasons described in the next section. But first, we explain the GIMME 

algorithm.  

Original GIMME with Observed Variables  

Before moving forward on the approaches for estimating latent constructs it is important 

to provide basic information regarding the search procedure for LV-GIMME. The relations 

provided by GIMME are temporal in nature. Contemporaneous (or instantaneous) and lagged 

relations4 can occur among variables (be they observed or latent). Contemporaneous relations are 

necessary for processes that are faster than the rate of measurement. For instance, in fMRI the 

signal (blood oxygenation levels) is a proxy for neuronal activity that occurs on a much faster 

scale (Huettel, Song, & McCarthy, n.d.; Logothetis, 2008). For this reason, temporal relations 

among brain regions tend to be best captured contemporaneously (Smith et al., 2011). Lagged 

relations provide insight into temporal precedence of constructs. Rationale for including both 

                                                             
3 “pseudo” because the assumption in ML that rows are independent is violated when obtaining 
factor model parameter estimates on time series data.  
4 At present only lagged relations of order 1 are included. It is suggested that researchers with 
larger orders regress out the greater lag order prior to GIMME analysis.   
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comes from work demonstrating that failure to include one type of relation (e.g., lagged) when 

they truly exist will result in spurious paths and a failure to arrive at the data-generating model 

(Gates, Molenaar, Hillary, Ram, & Rovine, 2010)5. The importance of including temporal 

relations for personalized models of psychological processes continues to be highlighted in the 

field (see Epskamp et al., 2018). 

Formally, the model found in GIMME (and thus LV-GIMME) is called a unified SEM 

(uSEM; Kim et al., 2007) and can be written as follows:  

𝜼𝒕 = 𝜶𝜼 + 𝑨𝜼𝒕 + 𝚽𝝃𝒕)𝟏 + 𝜻𝒕  (1) 

where t indicates time and t-1 indicating variables at a previous time point. The PxP matrix 𝚽 

contains the vector autoregressive (VAR) effects for the ξt-1 variables predicting the endogenous 

ηt values and P is the number of variables in ξt-1  . Returning to the fMRI example, 𝚽 contains 

the VAR(1) coefficients or quantitative estimates of how values for brain regions at a prior time 

point relate to those at the next time point. Note that ξt-1 and ηt are observed variables in the 

original GIMME algorithm and will be latent variables in the LV-GIMME algorithm. Here, the 

diagonal provides the autoregressive (AR) effects (or how a given variable predicts itself at later 

time points) and the off-diagonal effects are the cross-lagged effects, or how a given variable 

(e.g., brain region) is related to other variables at later time points. The PxP-dimensioned A 

matrix contains the contemporaneous relations among the endogenous ηt  variables. The Px1 

vector ζt contains the errors or disturbances in the equation and are assumed to have a mean of 

zero and not be correlated with the unique factors [𝐶(𝜺, 𝜻) = 0, 𝐶(𝜹, 𝜻) = 0] and 𝐶(𝝃𝒕)𝟏, 𝜻𝒕) = 0 

                                                             
5 Continuous time models provide an alternative to those that capture discrete processes with 
contemporaneous relations.  
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or lagged variables (i.e., errors are not autocorrelated). Figure 1 depicts the uSEM, where 

contemporaneous relations in the A matrix are depicted as solid lines and the lagged relations 

(𝚽) are dashed.  

  The search procedure for LV-GIMME builds directly from the original observed-variable 

GIMME. Given that extant literature exists elsewhere on the use (Beltz & Gates, 2017; Lane & 

Gates, 2017) and technical details (Gates, Lane, Varangis, Giovanello, & Guiskewicz, 2017; 

Gates & Molenaar, 2012) of GIMME, we provide only brief description of the algorithm and 

refer the reader to these papers for more information. At its core GIMME is a data-driven 

approach for arriving at structures of directed relations (i.e., paths) among variables in time 

series data. These relations are elements of the	𝚽 and A matrices. The addition of paths is 

guiding by modification indices, a diagnostic Lagrangian multiplier statistic that researchers can 

use to assess if a given path, if added, would confer significant improvement in the model.  The 

algorithm begins by first detecting which relations are significant for the majority of individuals 

in the sample. These “group-level” paths or relations are those that demonstrate high replicability 

across participants.   

In finding these paths, GIMME differentiates signal and noise at rates higher than 

conducting analysis only at the individual-level (Gates & Molenaar, 2012; Smith et al., 2011). 

GIMME also provides individual-level paths. These are paths that, after accounting for those 

paths found at the group-level, exist for specific individuals. By starting with models (in this 

case, group-level paths) that are closer to the individuals’ true models GIMME improves upon 

recovery of individual-level paths (Gates et al., 2017)6.  

                                                             
6 GIMME can also provide subgroup-level paths in addition to group- and individual-level paths. 
This is outside the scope of the present paper but is a possibility with LV-GIMME.   
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The LV-GIMME algorithm merges the benefits of measurement models with the 

accuracy of GIMME for arriving at dynamic model structures. Here, rather than search for paths 

among observed variables, it is the directed paths among latent variable proxies which are found 

in a data-driven manner. The 𝜼𝒕 vectors in Equation 1 are now predicted versions of the latent 

variables rather than observed variables. Importantly, the measurement model itself for any given 

individual is taken to be confirmatory. The LV-GIMME algorithm involves searching for 

relations among latent constructs and does not include exploratory factor analysis to arrive at 

person-specific measurement models. In the case where the structure of the measurement model 

varies across individuals, a priori analysis should be conducted to arrive at individual-level 

models, and these structures can then be used (see exemplar code in the Appendix for doing so 

with the gimme package). It is also possible for the researcher to impose the constraint that all 

individuals have the same measurement model (as is typically done in fMRI studies). The option 

is up to the researcher. The purpose of LV-GIMME is to arrive at the temporal dynamics among 

latent proxies (however they are defined) and provide asymptotically unbiased final estimates via 

MIIV-2SLS.  

Integration of Latent Variables with GIMME  

One important requirement of LV-GIMME is that all individuals must have the same 

number of latent variables which represent essentially the same constructs. Due to the potential 

for a high level of heterogeneity, allowing for variation in measurement models is best conducted 

on measures where there are observed variables that are hypothesized to be uniquely related to 

each latent construct and thought to be the strongest indicator of the latent construct. The user 

can then define these as the scaling indicator for the factor models in the case of factor analytic 

options. Additionally, by having the same scaling indicator for each latent variable for each 
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individual, we enable comparisons of effects of the latent variables because they share a common 

scale.  This would not be possible if the scaling indicator for the same latent variable differed 

across individual.  In the latter case, we would not know if the differences in coefficients or 

factor loadings were due to differences in the effects or differences in scaling.  Standardized 

coefficients/loadings would enable comparisons of expected differences in standard deviation 

units, but this adds another complication in comparisons where both an unstandardized 

coefficient and the standard deviations of variables affect the standardized coefficient (Blalock, 

1968).  

The general steps for LV-GIMME are as follows:  

1. Arrive at latent scores: Factor scores (obtained via pseudo-ML or MIIV-2SLS estimates), 

component series via PCA, or sum scores are calculated.   

2. Obtain latent variable model: The GIMME algorithm is conducted on these latent (or 

aggregate) scores to arrive at group- and individual-level patterns of relations among the 

latent variables. 

3. Estimate final model: Conduct final estimation of the latent variable and measurement 

model parameters via MIIV-2SLS. 

A number of options exist for arriving at scores that provide latent construct estimates across 

time (Step 1). For the factor score option, once measurement model parameter estimates are 

obtained via either pseudo-ML or MIIV-2SLS, there are options for generating the factor score 

series. The regression method for estimating factor scores from the lavPredict function in lavaan 

(Rosseel, 2012) is used in the present paper and is also an option when conducting LV-GIMME 

in the gimme package. These estimates of ht are then time-embeded to create the lagged version 

(𝝃𝒕)𝟏). The search for contemporaneous paths (the estimates of which are in A) and lagged paths 
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(F) is then conducted using the original GIMME algorithm on these estimates of latent time 

series data.  

As with the original GIMME, pseudo-ML is used to arrive at estimates during the search 

procedure. Unfortunately, these estimates are known to have issues for a number of reasons. For 

one, the latent variable scores that we use in the GIMME search procedure contain measurement 

error regardless of the method used, and thus bias the estimates of effects and standard errors. 

Two, even when measurement errors are not a concern it is known that conducting dynamic 

factor analysis within SEM results in inflated standard errors (Chow, Ho, Hamaker, & Dolan, 

2010). Third, the properties of the fit statistics used for evaluating model fit are unknown when 

used in conjunction with factor scores rather than the observed data. Given these reasons, it is 

possible that some relations among latent variables may be missed in the present context. The 

signal to noise ratio may be lower than seen in the study (Smith et al., 2011) that informed 

gimme’s default setting of requiring that 75% of individuals have a significant path before adding 

it to the group-level model.  We suggest using a looser criterion of 51% and back up this 

recommendation in the simulation studies to follow. As a final step, MIIV-2SLS is used to arrive 

at final estimates. The MIIV-2SLS estimator corrects for measurement errors and has a number 

of additional benefits that make it ideal for this context, which we explain in the next section. 

Figure 1 provides the results obtained in the fMRI data example when using the sum scores 

to represent latent brain network activity. The GIMME algorithm was used on these scores to 

arrive at the structure of relations for the latent variable model. Shown here are the average 

estimates across individuals for estimates of the GIMME-derived paths obtained from MIIV-

2SLS. We used the 160 brain regions across 34 individuals from the fMRI data example 

described previously. There were a number of group-level paths. When averaged across 
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individuals the contemporaneous path estimates were positive and the lagged path estimates were 

negative. Typically in fMRI contemporaneous paths are interpreted.  The mean number of 

individual paths (not shown) across the sample was 3.25 (SD=2.00).  

Output  

Taken together, the LV-GIMME algorithm provides group- and individual-level latent 

variable model path structures (as well as subgroup-level if invoked) directly from the gimme 

package. Typical gimme output is provided, such as the path estimates, fit indices, and plots (see 

Lane & Gates, 2017, for details). As the final estimates for both the measurement and latent 

variable model coefficients are conducted separately for each individual using MIIV-2SLS via the 

package MIIVsem (Fisher, Bollen, Gates, & Rönkkö, 2018), this additional output is also provided 

to the user. One difference with the MIIVsem output is that the same model fit indices will not be 

produced with the MIIV-2SLS procedure7. However, users can utilize the provided Sargan tests to 

explore the fit of overidentified equations and identify which individuals may not have appropriate 

model structures  (Sargan, 1958).  

The MIIV-2SLS estimator 

Regardless the aggregation method chose, we highly recommend that the final estimates 

for both the measurement model and latent variable model are obtained using MIIV-2SLS 

(Bollen, 1996). Fisher, Bollen, & Gates (2019) show that the MIIV-2SLS estimator has a number 

of advantages in the estimation of dynamic factor models within the SEM framework that are 

relevant for use with time series data.  For one, model misspecifications are better isolated 

                                                             
7 The GIMME procedure in LV-GIMME still uses fit indices for stopping criterion for the search 
procedure, and this is provided for the user. However these fit indices do not include the 
measurement component or the final estimates obtained in MIIVsem.   
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(Bollen, 2001). Model misspecification is a pervasive problem when looking at confirmatory 

models (Browne & Cudeck, 1993) and is even more likely if one does not take into account 

individual-level nuances (Molenaar & Campbell, 2009). Hence in the presence of a confirmatory 

or exploratory model, MIIV-2SLS estimation provides greater robustness to misspecifications 

(Bollen et al., 2018). 

A second and related benefit is that the latent variable model parameter estimation is 

conducted separately from measurement model parameter estimation. As noted above, much 

work has shown that the strict assumption of homogeneity in processes across individuals is 

often not met in neuroimaging (Finn et al., 2015; Gates, Molenaar, Iyer, Nigg, & Fair, 2014; 

Laumann et al., 2015; Miller et al., 2002), behavioral (Anzman-Frasca et al., 2013; Beltz et al., 

2013) and psychological (A. J. Fisher, Medaglia, & Jeronimus, 2018; Molenaar, 2004; Ram & 

Grimm, 2009; Wright et al., 2013) studies. MIIV-2SLS accommodates both the idiographic filter 

and need for individual-level models by (1) estimating measurement models separately for each 

individual and (2) estimating the latent variable model in such a way that the measurement 

model parameter estimates are not influenced by the latent variable paths added, thus enabling 

straightforward interpretation of both the measurement and latent variable coefficient 

components. This second point is a crucial feature of LV-GIMME estimated with MIIV-2SLS. It 

has been shown previously that relations (even misspecifications) occurring for the latent 

variable model do not influence the measurement model parameter estimates (Bollen et al., 

2018) and that MIIV-2SLS estimates of dynamic factor model parameters can be more robust to 

model misspecification when compared to traditional system-wide estimators (pseudo-ML, 

Kalman filter) (Fisher, Bollen, & Gates, 2019). Hence in this framework, estimating the entire 

final model using MIIV-2SLS will provide the same measurement model parameter estimates as 
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those one would obtain by estimating the model with no latent variable paths. This quality is 

referred to as “robust unchanged” (Bollen, Gates, & Fisher, 2018). 

A third benefit of MIIV-2SLS estimation is that it is conducted one equation at a time for 

each of the left hand side equations rather than simultaneously as is done in full information 

estimators.  Because there are fewer parameters in a single equation than in a full model, this 

reduces the burden on the estimation in that there are more observations per parameter in a single 

equation than when all parameters are estimated simultaneously in the full model.  The often-

used pseudo-ML estimation encounters convergence problems for shorter time series. This poses 

a problem across various domains of psychological inquiry. In brain data acquired via fMRI, 

there is often a large number of brain regions relative to the number of time points. Daily diary 

studies also encounter this problem if responses on numerous questions are provided for only one 

or two months. In both situations, researchers may be interested in the measurement model as 

well as the relations among latent variables at the individual level. MIIV-2SLS is noniterative 

(i.e., does not attempt multiple solutions) and does not face the problem of nonconvergence that 

may occur with the pseudo-ML estimator.  Another desirable feature of the MIIV-2SLS 

estimator is that it is possible to estimate identified equations even when the model as a whole is 

not identified. In some situations, this permits estimation of a key equation even if we cannot 

estimate all equations in the full model.    

In sum, the MIIV-2SLS opens up the new opportunities in that it: 1) is more robust to 

structural misspecification than full information estimators, 2) does not require equal parameters 

or structures across individuals, 3) is a noniterative estimator of coefficients and factor loadings 

that avoids issues of nonconvergence, 4) is computationally quick, and 5) enables estimation of 

identified equations in underidentified models.    Importantly, more recent investigations indicate 
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that MIIV-2SLS also has unique advantages over pseudo-ML and ML approaches for estimating 

dynamic factor models (Fisher, Bollen, & Gates, 2019). LV-GIMME takes advantage of these 

properties in our time series analyses.  

Technical Details of MIIV-2SLS  

Details on the MIIV-2SLS are available in several sources (Bollen, 1996; 2001; Bollen, 

Kirby, Curran, Paxton, & Chen, 2007). Here we give an overview of the estimator with 

additional details provided in the Supplemental Materials.  The MIIV-2SLS estimator starts by 

transforming the latent variable model into one that consists only of observed variables by 

replacing each latent variable by its scaling indicator minus its error.  This is the latent to 

observed variable transformation or L2O.  Rather than using an estimator that estimates all 

parameters simultaneously, the MIIV-2SLS estimator can apply one equation at a time.  The 

resulting observed variable equations resulting from the L2O transformation typically have a 

composite error that correlates with one or more of the covariates of an equation (see 

Supplemental Material for details).  Instrumental variable methods (e.g., Bollen, 2012) are 

helpful in situations like this.  Instrumental variables are uncorrelated with the composite error 

and correlate with the covariates that are associated with these errors. Unlike traditional 

applications of instrumental variables where instruments are identified from outside the model, 

the MIIV approach draws instruments from within the system itself based on the model 

specification.  For this reason, no special steps are required for identifying instruments in the 

context of empirical data (e.g., the exemplar fMRI data).  If for a given equation a variable is 

uncorrelated with the equation disturbance and correlated with the covariates (both of which are 

implied by the model) it can be considered a valid instrument. Finding variables that meet these 

conditions for instruments is done automatically within MIIVsem by using an algorithm from 
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Bollen (1996) that uses the model structure to determine which variables are suitable 

instruments, hence the term "model implied" instrument.  

The equation and MIIVs in hand, a 2SLS estimator is used.  We use a modification of the 

LISREL notation (Jöreskog, Sörbom, Aigner, & Goldberger, 1977; Bollen, 2001) to represent 

the measurement model component for dynamic factor models of lag one: 

𝒚𝒕 					= 𝜶𝒚 + 𝚲𝒚𝜼𝒕 + 𝜀𝒕                (2) 

𝒙𝒕)𝟏 = 	𝜶𝒙 + 𝚲𝒙𝝃𝒕)𝟏 + 𝜹𝒕)𝟏        (3) 

where yt is the vector of observed variables, ηt is the latent endogenous variables at a given time 

t, xt-1 is a vector of the same observed variables but at one prior time point, ξt-1 the latent 

variables at the prior time point, αy and αx are the vectors of intercepts, Λy and Λx are the 

matrices of factor loadings of dimension O observed variables by P latent variables, and εt and δt 

contain the measurement errors (or uniqueness) of the indicators. Note that the estimated 

parameters do not vary across time. The data are assumed to be multivariate stationary with 

constant cross-correlations across time. We assume that the errors have means of zero 

 and are uncorrelated with their respective latent variables [𝐶(𝜺, 𝜼) =

0, 𝐶(𝜺, 𝝃) = 𝟎, 𝐶(𝜹, 𝝃) = 0] and each other [𝐶(𝜺, 𝜹) = 0]. 

The latent variable uSEM (see Equation 1) provides the structure of relationships among 

these latent variables. The difference is that here, ξt-1 and ηt variables are latent instead of 

observed. An important feature of the model as written here is that the latent 𝝃𝒕)𝟏 variables are 

by definition predetermined (“exogenous”). This is because a variable at t cannot cause events 

backwards in time. As explained in the Supplemental Material, this special property of the 

[E(ε ) = 0, E(δ ) = 0]
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lagged variables provides a set of MIIVs that will be appropriate for the latent variable model 

parameter estimates.  

Empirical Example of Measurement Model parameter estimates from MIIVsem from 

fMRI data 

Figure 2 provides a depiction of the estimates for each of the 18 brain regions of interest (ROIs) 

that load on the cerebellum network. Here we provide the average estimates across individuals. 

We can immediately see that most brain regions seem to correspond relatively well with the 

cerebellum network with almost all estimates being at or above 0.40. Additionally, the standard 

deviations of the estimates (in parentheses) suggest that there is some variability across 

individuals in these estimates.  

Monte Carlo Simulation Studies 

Data generation 

The simulation studies to follow serve three purposes. First, we seek to evaluate the 

accuracy of the LV-GIMME path search across varied methods for arriving at latent scores. (In 

any case, final estimation using MIIV-2SLS would be recommended for reasons noted above.) 

Second, due to the presence of measurement errors in the latent scores (however derived), we seek 

to investigate for the first time if GIMME performs better in terms of path recovery when the 

threshold for what constitutes the “majority” of individuals in the group-level search is loosened. 

Three, we seek to evaluate when the algorithm performs well and when it does not. Towards aim 

1, we test five methods for arriving at scores across time: (1) scaling indicator only (i.e., observed-

variable model); (2) sum scores; (3) pseudo-ML; (4) MIIV-2SLS; and (5) first component series 

from PCA. These methods are utilized across all conditions to follow.  
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To investigate the second aim, we run GIMME with the threshold for majority set at 75% 

and with the threshold set at the most lenient definition of majority, that of being greater than half 

the individuals (51%). As a reminder, the GIMME search for paths begins by detecting which 

paths exist for the majority. These become what are considered the group-level paths. GIMME has 

previously only been evaluated at the 75% threshold for what defines the “majority” (Gates et al., 

2017; Gates & Molenaar, 2012; S. Lane et al., 2018). This value was informed by the expected 

power to detect dynamic effects among brain regions in fMRI studies. Much like other approaches 

(e.g., Ramsey et al., 2011), GIMME favors parsimony and may stop the model search procedure 

prior to detecting all true paths. Hence it may be appropriate to allow more paths to be added early 

in the model search, and this can be achieved by lowering the threshold for what constitutes the 

‘majority’ in the group–level search so that more paths are added here. Additionally, true paths 

may be difficult to detect since we know that measurement errors will be included in the scores 

for the latent variables regardless the approach used to estimate them. We investigate this by 

running the algorithm at the default group-level path threshold of 75% and altering this option for 

what constitutes the majority in the gimme function arguments to 51% for one condition.  

For the third aim, we varied a number of conditions known to exist across psychological 

studies. First, we varied the length of the time series: T = 60, 90, and 200. The first two are more 

likely to be seen in daily diary studies whereas having T = 200 observations may be more likely 

in psychophysiological studies such as functional MRI. For these investigations, we simulated data 

using the parameter estimates for the directed paths obtained from the latent variable models of 

the empirical fMRI data example. In this way, we could be sure that the degree of individual-level 

nuances was captured.  
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Specifically, for each individual the 𝑨, 𝚽, and Var(𝜻𝒕) matrices from the results obtained 

when GIMME was run on the sum scores of the observed brain variables (group-level results 

depicted in Figure 2) were used to generate factor scores (latent time series) for each of the desired 

time series lengths. Both group- and individual-level paths among latent variables were used as 

model structures for data simulations. We opted to use the sum scores rather than the factor scores 

reconstructed via MIIV-2SLS so that we were not generating the data in a way that was biased 

towards the factor analytic or PCA approaches.  

We then created observed time series according to two possible measurement model scenarios. In 

the first scenario, all 160 free elements of 𝚲 were set to unity. This represents an ideal situation 

where each observed variable loads approximately equally onto the construct. We expected each 

of the methods for arriving at the aggregate scores to work approximately equally well. For the 

second, free elements of 𝚲 were generated according to a truncated normal distribution with a 

mean of 0.50, a standard deviation of 0.25, and a range of 0.10 and 1.50. These values were 

informed by the empirical fMRI example results.  In both conditions Var(𝜺𝒕) was set to identity.  

Finally, for each of the described measurement model conditions we simulated a second 

set of observed time series with randomly assigned cross-loadings that were subsequently omitted 

during analysis. Hence the measurement models had misspecifications. For data generation we 

randomly assigned non-zero values to 20% of the elements in 𝚲 that had previously been fixed to 

zero. Conceptually, this means we allowed some observed variables to be influenced by more than 

one latent variable. In practice the omission of cross-loadings is likely and it is important to 

examine if performance of our method generalizes across commonly encountered scenarios. In our 

simulation design all conditions were fully crossed.  

Evaluation metrics 
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MIIV-2SLS has previously been shown to provide more robust estimates than pseudo-ML 

in a number of conditions (Bollen, et al., 2007), one of which being the dynamic models considered 

here (Fisher, Bollen, & Gates, 2019). For this reason we restrict our inquiry to the ability to 

accurately recover the latent variable paths and omit investigations into bias of estimates. LV-

GIMME does not conduct exploratory factor analysis and considers measurement model structures 

to be known. As such, only the ability for GIMME to recover the data-generating relations among 

latent constructs (i.e., paths) is assessed here. Sensitivity is used to assess the ability to recover 

paths that existed in the data-generating models and specificity is used to evaluate the presence of 

false positives. Sensitivity is the ratio of true positives (i.e., accurately recovered paths) over the 

total number of paths in the data-generating model. High values here indicate a high rate of 

recovery of true paths. Specificity was calculated as the ratio of true negatives (i.e., paths 

appropriately left out of the model) over the total number of possible paths not in the data-

generating model. High values would indicate a low rate of false positives. These values are 

calculated separately for each individual, and consider the recovery of all paths (both group- and 

individual-level) in arriving at the specificity and sensitivity values.  

Results 

The main finding is that recovery of paths via GIMME (i.e., sensitivity) did not differ 

substantially regardless what measurement approach was used for the latent variables or the 

distribution of lambda values in the data-generative process (see Figure 3). As expected, rates of 

recovering the true paths increased as the length of time series increased. These results suggest 

that GIMME may not reliably detect paths when the time series are shorter than T = 90. When 

using the 75% cutoff for the majority, rates become acceptable (the median above 70%) in terms 

of sensitivity for T greater than or equal to 90. For long time series of T = 200 the median recovery 
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rate was approximately 72% across all methods for recovering the true latent variable patterns. 

False positives, as quantified using specificity, are not a problem for any length of time as seen in 

the high specificity rates.  

Setting the group cutoff to 75% is conventional and performs well. We can see from the 

top panel of Figure 3 that false positives are not a problem and recovery of true paths is lower than 

75% on average. Hence we may be sacrificing the ability to recover the true paths by using a strict 

definition of majority (i.e., a group cutoff of 75%) in the effort to favor parsimony, thereby 

simultaneously reducing the risk for false positives. Given that measurement error may be clouding 

results we also ran GIMME with 51% as the threshold for what constitutes the majority of 

individuals in the group-level search path. This means that the technical majority – just over half 

of individuals – would need to have a path be significant in order for it to be added to the group-

level results. The bottom panel of Figure 3 depicts the results with this threshold. As expected, the 

recovery of true paths noticeably increased. For instance, at T = 200 the mean recovery for the 

truncated normal condition was 82%, compared to 77% for the same condition when 75% set as 

the group cutoff. Gains were also seen when T = 60, however this seemed more sensitive to the 

distribution of lambdas.  

 Finally, we evaluated results when the models were misspecified. A similar pattern 

emerged with only a few noteworthy differences. Figure 4 depicts the results from the simulation 

where data were generated to have 20% of the observed variables cross-load, with the top panel 

reflecting results with the 75% threshold for the majority and the bottom panel being when 51% 

was used. In each case for arriving at aggregate latent scores (i.e., sum score, MIIV-2SLS, Pseudo-

ML, and PCA), the measurement model was misspecified by omitting these additional paths. 

Interestingly, latent scores estimated using pseudo-ML, MIIV-2SLS, and PCA were robust to these 
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misspecifications. The scaling indicator (i.e., using only one variable) and sum score approaches 

demonstrated a decline in recovery of paths across all lengths of time with sum scores additionally 

evidencing an increase in false positives as indicated by the specificity plot. As seen in the correctly 

specified models, decreasing the group-level cutoff for what constitutes the majority to 51% 

improved model recovery (bottom panel, Figure 4). Again, this was not at the cost of an increased 

false positive rate; specificity also remained high.  

Empirical Example: Allowing for Qualitative and Quantitative Differences 

The Lebo & Nesselroade (1978) data have been used previously to explore measurement 

invariance across individuals. Self-reported data on 75 adjectives assessed with a 5-point scale 

were collected for five individuals (all female) across 120 days. Lebo and Nesselroade (1978) 

found some consistency across individuals, particularly for the factors of Well Being (Wb), Energy 

(En), and Fatigue (Fat). Social Affiliation (SocA) separated from other factors for 2 of the 5 

participants, and for the others was subsumed in Well Being. However, they note (as well as others; 

see Gayles & Molenaar, 2013) that some variability also exists in these factor structures. Here, we 

capitalize on this previously found consistency across individuals and use the items from all four 

factors and explore modifications to a four factor solution.  

To begin, we remove items for each individual that had low variance (defined here as a 

standard deviation below .10). Hence already there are qualitative differences in the model 

structure as individuals have different sets of observed variables. We then conducted confirmatory 

factor analysis to identify the best scaling indicator to use when looking across individuals. The 

loadings were rank-ordered and the observed variable per factor with the highest average rank 

across individuals was selected to be the scaling indicator for all individuals. The scaling indicators 

obtained were as follows: “cheer” was selected for Well Being, “energy” for Energy, “tired” for 
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Fatigue, and “warmhearted” for Social Affiliation. With the optimal scaling indicators in hand, we 

conducted an exploratory factor analysis separately for each individual whereby all non-scaling 

indicators were allowed to load on any of the four factors. Items whose standardized loadings were 

greater than or equal to 0.50 in absolute value were retained. Note that cross-loadings were 

allowed, as well as individual-level variability in the factor structure. The only constraints were 

that they have the same scaling indicators and the same number of factors.  This process results in 

individual-level measurement models that share a common set of scaling indicators across 

individuals without imposing further homogeneity constraints on the specific composition of each 

factor. 

The full table of results are in the supplemental materials as arrival at factor solutions is 

not the primary focus of this paper. Nonetheless, it is important to identify the extent to which the 

factors can be said to be proxies of the same constructs across individuals. Evidence suggests they 

are, to varying degrees. For instance, “carefree”, “cheer”, “happy”, “contented”, “at ease”, and 

“calm” loaded onto the Well Being factor for all individuals. All of these were hypothesized to be 

on the Well Being factor in Lebo & Nesselroade (1978). The Energy and Fatigue factors recovered 

here also showed a similar structure to previous results, namely all individuals having “energy”, 

“active”, “peppy”, and “lively” as indicators of Energy and “tired” as an indicator of Fatigue. For 

all individuals Social Affiliation contained a mix of hypothesized indicators as well as some from 

Well Being and Energy: “enthusiastic” (En), “comfortable” (Wb), “contented” (Wb), “relaxed” 

(Wb), “at ease” (Wb), “calm” (Wb), “warmhearted” (SocA), “affectionate (SocA), and “kindly” 

(SocA). Given these base sets of shared indicators, it seems that the factors having meaningful 

consistencies across individuals. 
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There were also qualitative differences in the factor structures across individuals. For 

example, only 28 of the recorded variables for Person 1 exhibited sufficient variance to be included 

in the analysis. This influenced the results: Fatigue had only three indicators for this individual: 

“sluggish”, “weary”, and “tired”. None of the other hypothesized indicators for this individual had 

enough variance to be included in the search space. Person 2 had more variables that met this 

criterion (35 variables of the total set had enough variance to be included) and five of these loaded 

on Fatigue. Three of the variables were the same as for Person 1. Hence some differences were 

expected due to the qualities of the data themselves.  

In all cases, estimates were uniquely obtained for each individual using the MIIV-2SLS 

option within gimme. To provide quantitative evidence of model consistency we used the 

congruency coefficient (Lorenzo-Seva & ten Berge, 2006). Details can be found in the 

Supplemental Material, but overall the congruency would not be considered high, with an average 

of 0.74 across the factors. Some individuals for some factors scored higher (e.g., 0.92 for persons 

1 and 2 on Fatigue) whereas others were low (e.g., 0.32 for Persons 1 and 3 on Fatigue). Much of 

this difference can be explained by the presence of more variables in the search space as well as 

poor differentiation for some individuals as evidenced by numerous cross-loadings. Nonetheless, 

subjective evaluation suggests consistency across individuals and differences were expected.  

This example provides one example of how individual nuances can be accommodated via 

the LV-GIMME approach. It is not required that individuals have the same model, yet it is 

recommended that researchers evaluate the differing solutions to ensure fidelity and determine 

whether or not the same constructs are being measured across individuals. The person-specific 

measurement model structures were used in LV-GIMME to arrive at a set of relations among the 

latent proxies (see Appendix for example code). Figure 5 depicts the results. As shown previously 
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(Lebo & Nesselroade, 1978), Energy had a negative relation with Fatigue for all individuals. 

Similarly, all individuals had strong and positive relations of Social Affiliation with Well Being 

and Energy.  

Discussion 

LV-GIMME detects ubiquitous as well as personalized patterns of relations among latent 

constructs. The algorithm described herein merges the benefits of two previously generated 

approaches – GIMME and MIIV-2SLS – that each have unique contributions. GIMME provides 

a data-driven search among latent constructs in a manner that allows for individual-level 

heterogeneity. It first detects signal from noise by finding paths that exist for the majority of 

individuals. Importantly, this is done in a way that cannot be swayed by just a few individuals. 

Prior work had demonstrated its ability to recover patterns of directed relations among observed 

variables; here we show that it performs equally well on data aggregated in some manner to 

represent latent constructs. The second important aspect of LV-GIMME is the use of MIIV-2SLS 

for estimation. Using MIIV-2SLS for final estimation of the measurement and latent variable 

models ensures greater robustness when estimating the final models even if there are 

misspecifications.  

The simulation results suggest that using factor score estimates or the first component 

series from PCA outperforms using sum scores (as is commonly done in practice). Additionally, 

when the observations are imperfect measures of a latent construct, conducting observed-variable 

analysis performs poorly in terms of recovering relations among the constructs. Finally, gains in 

recovering paths were seen by decreasing the group-level threshold to 51%. Importantly the rate 

of false positives remained very low even when allowing for more paths to potentially emerge at 

the group level. These results point to the flexibility of options when conducting LV-GIMME. The 
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gimme package provides options for the approaches that performed well - factor analysis with 

MIIV-2SLS or pseudo-ML and PCA - for developing latent construct time series.  

 

Allowing for measurement and latent variable models to vary across individuals 

A key benefit of using LV-GIMME is that both the measurement models (how the observed 

variables relate to the latent construct) and latent variable models (how the latent constructs relate 

to each other) are allowed to vary. This is critical since much work has shown that individuals vary 

in how constructs are measured (Hamaker et al., 2005; Molenaar & Campbell, 2009) as well as 

how constructs relate to each other (Epskamp et al., 2018; Fisher & Boswell, 2016; Fisher et al., 

2018; Lane et al., 2018). The use of MIIV-2SLS for estimation separates the estimation of the 

measurement model from the latent variable model; in this way, the measurement model parameter 

estimates remain unchanged regardless of which paths are omitted or added to the latent variable 

model (Bollen et al., 2018). Allowing for both components to vary represents an extension of the 

Idiographic Filter (Nesselroade et al., 2007), which allows the measurement component to vary 

across individuals but maintains that the relations among constructs remain the same.  Enabling 

personalized variability in the pattern of relations among latent constructs will allow for 

understanding of individual-level processes as they unfold over time. LV-GIMME does not require 

that temporal dynamics be the same across individuals but it does find these similarities should 

they exist.  

Comparisons to the Idiographic Filter  

A few clarifications regarding the ideographic filter proposed by Nesselroade et al. 

(2007) and aspects of the LV-GIMME algorithm are in order.  First, in regards to the 
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measurement model, both approaches propose allowing the measurement model to vary at the 

individual level.  In the case of the LV-GIMME algorithm discussed here an additional 

assumption is made. Here, we assume that for any given construct at least one indicator is shared 

across all subjects.  This indicator is then set to be the scaling-indicator for the construct in 

question for all subjects in the sample.  Specialized statistical diagnostics to see if this is true 

require further development, but common guidelines regarding the selection of scaling indicators 

are appropriate here. Namely, it is important that the scaling indicator chosen is a strong measure 

of the construct of interest given prior research or current estimates. 

 Second, we describe differences among the two approaches in terms of the relations 

between the person-specific factors.  Nesselroade et al. (2007) propose the correlations among 

the factors are equivalent across all subjects as a means of equating the theoretical variables 

across individuals.  By restricting these correlations to be quantitatively equivalent across all 

individuals, Nesselroade et al. (2007) argue that researchers can be confident that the constructs, 

although measured by different indicators, are equivalent. While conceptually one might argue 

that there should be some processes that are common across all individuals (Molenaar & 

Nesselroade, 2012), clinical work indicates that individuals also vary in important ways (Fisher 

& Boswell, 2016). At present it is unclear what processes are truly nomothetic and hold for all 

individuals and which ones have personalized nuances, but results obtained on observed 

variables suggest individuals may vary greatly in their processes (Fisher et al., 2018). 

In the approach described here this restriction is relaxed. We do not require that relations 

among different latent constructs be equivalent across individuals, and in fact we expect them to 

differ both quantitatively and qualitatively. This is because the relations among constructs of 

interest in the study of psychology may vary across individuals. As an example, the relationship 
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between worry and depression may vary across individuals.  For some individuals, they may not 

be related and have a relation estimate close to zero. For other individuals, depression may 

precede worry whereas for other individuals worry may precede depression. That a relationship 

between worry and depression exists when looking across individuals (as seen in cross-sectional 

analysis) does not necessarily inform that the relation might occur when looking across time 

within individuals (Molenaar, 2004). A recent paper found that much variability exists in the 

estimates for relations among these constructs when looking across individuals and caution 

against using assuming the same relations across time exist for all individuals (Fisher, Medaglia, 

and Jeronimus, 2018).  

Degree of congruence among individuals’ factor models  

Now that we have outlined the major differences in these approaches we address an 

important set of questions that is pertinent to both approaches: how similar need the factor 

models be to say they are capturing the same underlying construct?  How do we know we are 

measuring the same construct across individuals if invariance is not imposed at the measurement 

or level?  This question is a bit circular since the premise behind the Idiographic Filter and LV-

GIMME is that individuals do vary in their measurement model. However there must be a point 

at which individual models are too different to be assessing the same construct. Currently best 

practices seem to be subjective evaluation by the researcher or clinician to identify if the latent 

constructs indicated by the factor solution patterns seem to represent the same constructs across 

individuals.  

One analytic option might be to investigate the congruence coefficient. Cutoffs are 

available for identifying when measurement models can be considered “fairly similar” (Lorenzo-

Seva & ten Berge, 2006). However, these values were derived from the perspective of evaluating 
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measurement invariance across individuals, which we argue is not a realistic assumption in all 

cases. It is certainly possible to have a congruence factor that is lower than the “fairly similar” 

threshold of 0.80 and still be assessing the same construct. One example would be if one 

individual has 5 items that load on a factor, and another individual has the same 5 items along 

with 8 additional items. Are these still the same construct, even though one person’s model was 

more parsimonious than the second? Perhaps. Clearly more work is needed to identify the lower 

bound, or a threshold for congruence coefficients, that indicates when measurement models 

cannot be said to be assessing the same construct. In the meantime, if a researcher hopes to draw 

conclusions about the consistency of factors across individuals it is recommended that factor 

compositions are compared across individuals, paying specific attention to the co-occurrence of 

specific items.   

Choice of proxy for data-driven detection of relations among latent variables 

An interesting finding is that GIMME performs well regardless of the method used to arrive 

at latent variable scores. Using pseudo-ML (the current standard) or MIIV-2SLS to estimate factor 

solutions and subsequent factor scores or using PCA to obtain the first component scores across 

time all worked approximately equally well as inputs to LV-GIMME. The oft-seen approach of 

summing across observed items did not consistently perform well. Importantly, the use of a single 

observed variable in simulations where the constructs were designed to be measured with multiple 

observed variables performed poorly. This has important implications for the use of observed 

variables (i.e., single indicators) in data-driven searches at the individual level when measurement 

errors may be present. Our paper suggests that in some cases observed variable analysis may not 

be appropriate. Specifically, when the observed variable is better utilized as a measure of an 

overarching construct then latent variables provide more reliable results in data search procedures 
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such as this one. Recent efforts have been made to merge observed variable and latent variable 

analysis (Epskamp, Rhemtulla, & Borsboom, 2017). This could easily be done in the LV-GIMME 

context by providing a mix of variables with some being factor scores and others being observed 

variables.  

Choice of what constitutes majority in data-driven search 

A key part of the GIMME algorithm (and therefore, the LV-GIMME approach) is the 

detection of group-level paths, or paths that exist for the majority of individuals. These paths are 

used to make inferences that generalize to the population from which the sample came and also 

provide a strong foundation for the search for individual-level paths (Gates & Molenaar, 2012). 

Like many search algorithms (Mumford & Ramsey, 2014), the LV-GIMME search algorithm 

favors parsimony in the model selection approach. This sometimes comes at the cost of missing 

true relations that should be in the model, as was seen here - false positives or spurious paths were 

rare in LV-GIMME regardless the method for arriving at the latent variable. Hence it seems that 

we could be a bit more lenient in the addition of paths.  

Within the GIMME algorithm, there is an option to loosen a criterion, called group cutoff, 

which dictates what is considered the threshold for majority when detecting which paths exist for 

the majority of individuals. GIMME has previously been evaluated with a group cutoff of 75%. 

This was informed by fMRI research and prior simulation studies (Smith et al., 2011). It again 

performed well here when there are at least 90 time points per person by accurately detecting both 

the presence of a relation and its direction. While acceptable, there is still room for improvement 

in these rates. We thus tested how well paths were recovered when the threshold for what is 

considered the majority is loosened. When the group cutoff threshold was decreased to 51% the 

recovery rates improved. Importantly, this was not at the cost of increased numbers of false 
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positive paths. Hence it seems there is benefit to decreasing the group cutoff threshold and this 

comes with few drawbacks in the data simulated here.  

 

Limitations 

At present, researchers must provide a confirmatory measurement model for each 

individual (or the same one for all individuals). Ideally the search algorithm would also find 

personalized measurement models. In light of the potential for latent constructs to vary greatly 

across individuals, more work is needed towards arriving at reliable models from exploratory 

factor analysis conducted at the individual level. Another limitation is that LV-GIMME does not 

perform well for under 90 observations. While the final estimation approach, MIIV-2SLS, can 

provide unbiased results with fewer time points, the search procedure in GIMME requires at 

least 90. This may prevent the use of the algorithm with some data, such as daily self-reports 

collected over only the span of 30 days. However, the approach does capitalize on the MIIV-

2SLS ability to arrive at robust results when the number of observed variables is relatively large 

compared to the number of time points.   

Closing remarks 

LV-GIMME provides researchers with a method for arriving at truly personalized 

dynamic models. This will aid in getting the field even closer to targeted treatment, intervention, 

and prevention plans. The results presented here demonstrate that it performs well when 

individuals have the same measurement structure but different estimates for those relations. 

Importantly, LV-GIMME can recover the true process among latent constructs even when 

individuals vary in how their latent constructs are measured.   
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Figure 1. Depiction of GIMME results obtained from sum scores of network brain 
regions. Values in parentheses represent means and standard deviations for parameter 
estimates across individuals. Dashed lines indicate lagged relations, solid lines depict 
contemporaneous relations. Individual-level paths not depicted here. Squares at the end 
of the arrows relating to circles reflect the number of indicators used for each latent 
construct (i.e., observed brain regions that load onto a given latent network).   
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Figure 2. Measurement Model parameter estimates for Cerebellum. The cerebellum 

network (i.e., latent variable) has 18 brain regions of interest (indicated as ROI) that 

load on it. This figure shows the average lambda estimates obtained via MIIV-2SLS and 

standard deviations in the parentheses. 
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Figure 3. Sensitivity and specificity results for correctly specified model on simulated data 

when the cutoff for the proportion representing the majority during group-level path 

selection = 75% (top panel) and 51% (bottom panel). 
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Figure 4. Sensitivity and specificity results for misspecified model on simulated data when 

the cutoff for the proportion representing the majority during group-level path selection = 

75% (top panel) and 51% (bottom panel).  
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Figure 5. Depiction of (A) group level and two exemplar individual’s latent variable model 

results (B,C). All figures provided directly from the gimme package output. While the 

pattern of relations among latent variables is consistent, the weights differ. The 

measurement models (available in the Supplemental Material) reveal much variability in 

the measurement of these constructs for the individuals. Red indicates positive values 

(hot), blue indicates negative values (cold). Dashed lines are lagged, solid 

contemporaneous.  
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Appendix 

Example of code for running LV-GIMME within the gimme R package. Here, there are 3 latent 
constructs (factors) and 9 observed variables.  

#Define measurement model structure 
lv_model <- ' 
  L1 =~ V1 + V2 + V3 
  L2 =~ V4 + V5 + V6 
  L3 =~ V7 + V8 + V9 
' 
 
# Run LV-GIMME by providing the measurement model structure 
fit <- gimmeSEM( 
  data     = data_list, # list of data 
  lv_model         = replicate(length(data_list),lv_model), 
  lv_scores        = "regression", 
  lv_estimator     = "miiv",            
  lv_miiv_scaling  = "first.indicator",  
  lv_final_estimator = "miiv" 
) 
 
# Examine estimates for factor loadings and paths among latent  
#  variables: 
fit$lvgimme$miiv_est_table 
 


