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ABSTRACT
Structural vector autoregressive models (VARs) hold great potential for psychological science, partic-
ularly for time series data analysis. They capture the magnitude, direction of influence, and temporal
(lagged and contemporaneous) nature of relations among variables. Unified structural equationmod-
eling (uSEM) is anoptimal structural VAR instantiation, according to large-scale simulation studies, and
it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM
results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM
analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplishedwith two
simulated data sets, an empirical data set concerning children’s dyadic play, and modifications to the
group iterative multiple model estimation (GIMME) program, which implements uSEMs with group-
and individual-level relations in a data-drivenmanner. Results revealedmultiple solutions when there
were large contemporaneous relations amongvariables. Results also verified severalways to select the
correct solution when the complete solution set was generated, such as the use of cross-validation,
maximum standardized residuals, and information criteria. This work has immediate and direct impli-
cations for the analysis of time series data and for the inferences drawn from those data concerning
human behavior.

Time series data have significant potential for providing
new insight into human behavior. Although these data
have traditionally been underutilized in psychology, the
tide is turning, perhaps due to researchers’ decreased will-
ingness to accept limitations associated with group-level
analysis approaches (Molenaar, 2004) or due to the field’s
increased appreciation for time-indexed functional neu-
roimaging and telemetric (e.g., wearable computers and
mobile phones) data (Goodwin, Velicer, & Intille, 2008;
Poldrack &Wagner, 2004). Thus, there is great interest in
the development and refinement of analysis procedures
for time series data.

Structural vector autoregression (VAR) is a valuable
approach to the analysis of time series data. Structural
VARs have been developed and applied extensively in
econometrics (Lütkepohl, 2005; Martin, Hurn, & Harris,
2013), and their value for answering questions related to
psychological, including brain, science is beginning to be
realized (Beltz, Beekman, Molenaar, & Buss, 2013; Gates
&Molenaar, 2012). Structural VARs are based on a trans-
formation of standard VARs. Consider a weakly station-
ary p-variate time series y(t). Weak stationarity implies
that y(t) has constant mean level (conveniently fixed at
zero in what follows) and covariance function cov[y(t),
y(t-u)], which only depends on the lag u. A standard

CONTACT AdrieneM.Beltz axb@psu.edu DepartmentofHumanDevelopment andFamily Studies, ThePennsylvania StateUniversity, Biobehavioral
Health Building, University Park, PA , USA

VAR(a) for y(t) is specified as

y(t ) = �1y(t−1) + �2y(t−2) + . . .

+ �ay(t−a) + ε(t ) , (1)

where y(t) is the p-variate weakly stationary time series to
be explained at time t= 1, 2,…,T, withT the length of the
time series;�k is the (p,p)-dimensionalmatrices of regres-
sion coefficients at lag k= 1, 2,…, a; and ε is the p-variate
process innovations, lacking sequential dependencies and
having a zero mean and full covariance matrix. In stan-
dard VARs, the full covariance matrix of ε is the source of
contemporaneous relations among the component series
of y(t).

A structural VAR(a) is specified as

y(t ) = �y(t ) +�1y(t−1) +�2y(t−2) + . . .

+�ay(t−a) + ν(t ) , (2)

where y(t) is defined as in Equation (1); � is the (p,p)-
dimensional matrix of contemporaneous regression coef-
ficients; �k is the (p,p)-dimensional matrices of regres-
sion coefficients at lag k = 1, 2,…, a; and ν is the
p-variate process innovations, lacking sequential depen-
dencies and having a zero mean and a diagonal covari-
ance matrix. In the structural VAR in Equation (2), � is
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the cause of the contemporaneous relations among the
component series of y(t). The structural VAR typically
is obtained by transforming a standard VAR by means
of Cholesky decomposition of the full covariance matrix
of the process innovations ε(t) in Equation (1) (Lütke-
pohl, 2005). Structural VARs estimated in this way (by
means of Cholesky decomposition) are not unique but
depend upon the ordering of the univariate component
series in y(t) (Loehlin, 1996; Lütkepohl, 2005; Molenaar
& Lo, 2016).

The nonuniqueness of structural VARs obtained by
Cholesky decomposition can, however, be avoided by
using the unified structural equation model (uSEM;
Gates,Molenaar, Hillary, Ram, &Rovine, 2010; Kim, Zhu,
Chang, Bentler, & Ernst, 2007). Themodel is optimal, due
in large part to the way in which it is usually fit to the data:
Instead of first fitting a standard VAR to the data then
carrying out the Cholesky decomposition of the covari-
ance matrix of the process innovations and finally trans-
forming the standard VAR into the structural VAR, Equa-
tion (2) is fitted directly to the data. In what follows, the
alternative approach is called fitting uSEMs. The fit of a
uSEM starts with fitting a null model (i.e., an instance of
Equation [2] in which all coefficient matrices are zero).
Within an SEM framework, Lagrangemultiplier tests (i.e.,
modification indices that mark how much model fit as
assessed by the likelihood ratio will improve if a particular
fixed parameter is freed; Sörbom, 1989) are then used to
sequentially free parameters in the null model until it pro-
vides an excellent fit to the observed data; nonsignificant
parameters as assessed by Wald tests are then trimmed
from the model. Although the data-driven modification
index-based building of covariance structure models has
been criticized (Kaplan, 1989; MacCallum, Roznowski,
& Necowitz, 1992), hierarchical Lagrange multiplier tests
combined with model trimming (as implemented in
uSEM) have been shown to perform as well as the likeli-
hood ratio test (Chou & Bentler, 1990). uSEM was devel-
oped for use with functional neuroimaging data to map
relations among the activity of brain regions of interest
during a task or resting state (see also Gates, Molenaar,
Hillary, & Slobounov, 2011). In this domain, simulation
studies have shown that uSEM accurately recovers lagged
and contemporaneous connections between brain regions
and accurately reflects the effects of external input (i.e.,
experimental conditions) on the connections (Gates et al.,
2010; Gates et al., 2011). In addition, uSEM has been suc-
cessfully applied to behavior—for example, revealing sex
differences in the temporal nature of vigor of activity and
positive affect during children’s unstructured group play
(Beltz, Beekman, et al., 2013).

A key advantage of uSEM is that it can be employed
across possibly heterogeneous individuals using group

iterative multiple model estimation (GIMME; Gates &
Molenaar, 2012). GIMME implements uSEMs in two
steps, first fitting lagged and contemporaneous variable
relations that apply to the full sample and then fitting
additional variable relations that only apply to individuals.
In this way, GIMME facilitates group-level inferences and
maintains the integrity of the person-specific time series.
Simulation studies in the neuroimaging domain show
that GIMME outperforms all other modeling techniques,
including standard VARs and SEMs and dynamic causal
models (Gates & Molenaar, 2012; Smith et al., 2011).
GIMME shares some features with and performs simi-
larly when analyzing homogeneous data to an approach
employed by Ramsey, Hanson, and Glymour (2011); both
use multisubject data and automated model fitting to
create group-level solutions with causal (i.e., directed)
relations. However, GIMME is unique in its ability to
handle heterogeneous data by adding individual-level
relations to the group-level solutions and tomodel experi-
mental conditions. GIMME is, therefore, the optimal data
analysis approach for identifying contemporaneous and
lagged directed relations among variables in a heteroge-
neous multisubject data set.

The potential for multiple solutions to result from
uSEM analysis has not been investigated, but there is rea-
son to suspect that competing solutions exist. Multiple
solutions occur when different sets of parameters pro-
vide similar fit to the data: Equivalent solutions have iden-
tical implied covariance structure and degrees of free-
dom, whereas plausible alternative solutions have similar
(but not identical) fit and provide substantively different
interpretations; the substantive differences are large com-
pared to the statistical differences in fit (cf. Markus, 2002).
Multiple solutions are obviously problematic because a
given result may provide a different interpretation of the
data than alternative results that were not considered
but that had similar empirical support (see, e.g., Henley,
Shook, & Peterson, 2006). Multiple solutions have been
most extensively considered in the SEM literature as each
SEMpotentially has an infinite number of them (MacCal-
lum, Wegener, Uchino, & Fabrigar, 1993; Raykov & Mar-
coulides, 2001). It is, therefore, likely that uSEMs also have
multiple solutions because they are a type of structural
VAR implemented within an SEM framework. As SEMs
only consider contemporaneous relations, multiple solu-
tions in uSEMs will almost always stem from the contem-
poraneous relations, particularly during the initial stages
of the determination of the direction of influence between
two variables. This is illustrated by the simple bivariate
case, wherein the directed β from a regression of x on y
equals the directed β from a regression of y on x. All sta-
tistical indices are the same for the two analyses, but the
interpretations greatly differ. Which result is correct?
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When time series data analysis approaches produce
multiple solutions, there are some practical and precise
ways to select an optimal result. First, eliminate solu-
tions that are conceptually improbable (MacCallum et al.,
1993; Markus, 2002). Second, eliminate solutions that
contain statistically unlikely or nonsignificant relations—
for example, through the use of penalized regression
(Valdés-Sosa et al., 2005). Third, gather more informa-
tion; that is, collect data from additional individuals, vari-
ables and task manipulations, or measurement occasions
(Nesselroade & Ram, 2004) in order to eliminate solu-
tions or replicate previous findings (MacCallum et al.,
1993). Fourth, use fit indices to determine whether the
estimated solutions provide excellent fit to the observed
data; combinations of indices that have been found to
be reliable in past work are particularly meaningful,
such as the root mean squared error of approximation
(RMSEA), nonnormed fit index (NNFI), comparative fit
index (CFI), and standardized root mean square resid-
ual (SRMR) (Brown, 2006; Gates &Molenaar, 2012; Hu &
Bentler, 1998). Fifth, evaluate the standardized residuals
for the estimated relations, for example, using the largest
residual as a marker of discrepancy between the esti-
mated solution and observed data (MacCallum & Austin,
2000; e.g., Zhuang, LaConte, Peltier, Zhang, & Hu, 2005).
Sixth, use information criteria, such as the Akaike infor-
mation criterion (AIC; Akaike, 1974) to compare solu-
tions. This is especially relevant when models are not
nested and differ in degrees of freedom (see de Marco
et al., 2009). A key point is that selection of an opti-
mal solution often requires all possible solutions to be
generated; the approaches reviewed thus far have the
most utility if they are applied across the complete set of
solutions.

Current study

The aim of this work was to determine whether multiple
solutions result from uSEMs implemented with GIMME
and to showcase ways to select an optimal solution when
several alternatives are generated. Multiple solutions were
expected to result when fitting uSEMs if there were itera-
tions inwhichmaximummodification indiceswere equal.
(This is qualitatively different from the multiple solu-
tions that result when estimating structural VARs by fit-
ting standard VARs, then transforming them through
Cholesky decomposition of the covariance matrix of pro-
cess innovations because the ordering of the univariate
raw data series does not influence uSEM results.) Aims
were accomplished by modifying the GIMME program
(http://www.nitrc.org/projects/gimme/) to output the set
of all possible solutions, resulting in the new program
detailed in the following section: GIMME for multiple

solutions (GIMME-MS).1 GIMME-MS was then applied
to three data sets.

The first two data sets were simulated according to
a uSEM. The first set contained larger (in magnitude)
lagged than contemporaneous relations, and the sec-
ond set contained smaller lagged than contemporaneous
relations. Multiple solutions were not expected for the
first simulation since modification indices should indi-
cate to free (relatively large) lagged parameters before
(relatively small) contemporaneous parameters. Multi-
ple solutions were expected in the second simulation,
however, since modification indices should indicate to
free (relatively large) contemporaneous parameters before
(relatively small) lagged parameters, and at the initial
phases of the sequential application of Lagrange multi-
plier tests the values of contemporaneous directed rela-
tions between each pair of univariate component series
are equal. For example, if no other freed relations con-
cern variables m and n, γm,n fits the observed data as
well as γ n,m. Without additional statistical context (e.g.,
a freed relation that concerns variable m or n) or con-
ceptual guidance, the only way to generate an accu-
rate solution is to free each contemporaneous param-
eter (e.g., γm,n and γ n,m) in its own solution path so
that separate models can be built and evaluated, as
was done here. When multiple solutions were found,
an optimal result was selected from the set of equiva-
lent and plausible alternative solutions by gathering addi-
tional information (e.g., cross-validation in newly simu-
lated data sets), evaluating combined fit indices, examin-
ing maximum residuals, and considering an information
criterion.

The third data set was empirical, containing vigor of
activity and positive affect ratings for dyads of children
aged 4–7 years engaged in a play session designed to elicit
rough-and-tumble interactions. Data from eight dyads
were selected to demonstrate that multiple solutions can
occur in GIMME analysis of empirical data. This particu-
lar data set was optimal for such a demonstration because
past work with uSEM has shown that contemporaneous
relations are important for characterizing the vigor of
activity exhibited by girls and boys during free play (Beltz,
Beekman, et al., 2013), and we expected multiple solu-
tions to result from data sets with large contemporaneous
relations. When multiple solutions were found, an opti-
mal result was selected by implementing model selection
metrics that have been validated in previous research—
namely, by evaluating combined fit indices, examining
maximum residuals, and considering an information cri-
terion.

 GIMME-MS is a Matlab-based program that interfaces with LISREL. A copy of
the program is available from the authors, and a final version will be made
publicly available at http://quantdev.ssri.psu.edu/avada_resources/gimme/.

http://www.nitrc.org/projects/gimme/
http://quantdev.ssri.psu.edu/avada_resources/gimme/
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Method

GIMME

Standard GIMME
GIMME (Gates & Molenaar, 2012) is an automated Mat-
lab program that calls LISREL (Jöreskog & Sörbom, 1992)
to implement uSEMs on person-mean-centered data at
the group and individual levels using an estimation
method best classified as pseudomaximum likelihood
because it concerns the analysis of a block-Toeplitz
covariance matrix containing dependent observations
(cf. Hamaker, Dolan, & Molenaar, 2005; Molenaar &
Nesselroade, 1998); this estimation approach yields
results comparable to raw data likelihood and Bayesian
methods (Zhang, Hamaker, & Nesselroade, 2008).
GIMME for a lag of one is specified as

ηi(t ) = (
Ai + Ag)ηi(t ) + (


1,i + 
1
g)ηi(t − 1)

+ ζi(t ) , (3)

where ηi(t) is the p-variate weakly stationary time series
to be explained at time t = 1, 2,… T, with T the time
series length; A is the (p,p)-dimensional matrix of con-
temporaneous regression coefficients; 
1 is the (p,p)-
dimensional matrix of regression coefficients at lag 1;
ζi is the p-variate process innovations, lacking sequen-
tial dependences and having zero mean and a diag-
onal covariance matrix; superscript g indicates group-
level relations; and subscript i indicates individual-level
relations. Thus, there are no bidirectional relations in
GIMME models as the goal of the program is to define
behavioral networks by the endogenous interplay among
variables in the network and not by exogenous influ-
ences on the network (e.g., as would be reflected by cor-
related process innovation terms; see Molenaar & Lo,
2016).

GIMME performs several steps in order to estimate
parameters for A and 
1, that is, to identify directed
contemporaneous and lagged relations among variables.
First, null models are estimated for all individuals, fit to
(2p,2p)-dimensional block Toeplitz covariance matrices
generated from the behavioral time series (Box, Jenkins,
& Reinsel, 2008; Molenaar, 1985), with only the diago-
nal covariance matrix of the process innovation being
freely estimated. Second, a group-level solution is gener-
ated. The parameter in Ag or 
1

g most improving model
fit across individuals is determined with Lagrange multi-
plier tests (modification indices; Sörbom, 1989), then the
model is reestimated with this relation freed. This pro-
cess is repeated until no relation significantly improves
model fit for the group. Third, the group-level solution

is trimmed, ensuring that all freed relations are signifi-
cant for a critical mass of the individuals, as determined
by a researcher-specified criterion. The criterion is the
percent of individuals for whom a relation must be sig-
nificant in order for the relation to be included in the
group model for all individuals. Fourth, individual-level
solutions are generated. After estimating the group-level
solution, parameters in Ai and 
1,i for each individ-
ual are iteratively freed using Lagrange multiplier testing
until no relation, if freed, significantly improves model
fit. Fifth, individual-level solutions are trimmed, ensur-
ing that all variable relations are either significant for the
individual or satisfy the group criterion. Sixth, a confir-
matory model is run. Solutions are accepted if two of
four indices indicate excellent fit (according to Brown,
2006): RMSEA � .05; NNFI � .95; CFI � .95; SRMR �
.05.

GIMME formultiple solutions (GIMME-MS)
GIMME was modified in order to generate multiple solu-
tions (when they are present). A schematic representa-
tion of the GIMME-MS program is shown in Figure 1.
The GIMME equation in (3) also underlies GIMME-
MS, but the procedure for building model solutions has
been modified: For iterations in which the maximum
modification index is not singular (i.e., it is not singu-
lar when two or more parameters have the same, maxi-
mal Lagrange multiplier test result), each parameter con-
taining the maximum modification index is freed in its
own solution “path.” After freeing parameters in separate
solution paths, each path independently iterates, with the
potential for additional solution paths to emerge asmodel
fitting progresses (if maximum modification indices of
future iterations are not singular). Thus, new paths can be
generated at any iteration and at the group or individual
level.

Group-level equality of Lagrange multiplier testing
is defined as the average maximum modification index
across all individuals being equal for two or more
parameters:

∑N
i=1 MIj,i
N

=
∑N

i=1 MIk,i
N

=
∑N

i=1 MIl,i
N

. . . >

∑N
i=1 MId,i

N

≥
∑N

i=1 MIe,i
N

≥
∑N

i=1 MIf ,i
N

. . . , (4)

where subscript i indicates one of N individuals (with the
summation acrossN individuals indicating that themodi-
fication indices apply at the group level);MI indicates the
modification index; subscripts j, k, l, and so on, indicate
fixed parameters in A or
1 (that will be freed in separate
paths in the next iteration); and d, e, f, and so on, indi-
cate fixed parameters in A or 
1 (that will not be freed in
the next iteration). Individual-level equality of Lagrange
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Figure . Schematic representation of themodel generation and fitting procedures for group iterativemultiple model estimation for mul-
tiple solutions (GIMME-MS), an extension of GIMME (Gates & Molenaar, ). uSEM= unified structural equation model.

multiplier testing is defined as the maximum modifica-
tion index being equal for two or more parameters:

MIj,i = MIk,i = MIl,i . . . > MId,i ≥ MIe,i ≥ MIf ,i . . . ,
(5)

where MI, i, j, k, l, and d, e, f, are defined as in Equa-
tion (4).

Because of the inevitable finite precision of com-
puting with real-valued variables, the GIMME-MS pro-
gram allows users to define MI equality. In analyses
reported here, (average) modification indices were con-
sidered non-singular if they were equal to three decimal
places (based on the assumption that differences beyond
three decimal places are not substantively meaningful).
Prior to GIMME-MS, GIMME selected parameters to be
freed based on infinitesimal differences in modification
indices, potentially producing uniquemodel fits that were
more dependent on machine precision than on psycho-
logical relevance.

Simulated data

Two initial structural VAR data sets were simulated
according to uSEM. Each simulation contained data for
75 individuals on four variables, and each variable con-
tained 300 measurements (i.e., time series were of length
300). An additional data set used in cross-validation was
also simulated, using the same simulation parameters as
the initial data set, when an initial data set producedmul-
tiple solutions.

Figure 2 shows the parameters used in the simulations
in matrix and diagram form, with the zero mean process
innovation having a covariance matrix equal to the iden-
tity matrix. The same standardized parameters were used
for each individual and, therefore, apply at the group level.
The first simulation (Figure 2A) contained relatively large
lagged parameters in 
1 and relatively small contempo-
raneous parameters in A. Appendix A shows an alter-
nate representation of this figure, a representation that can
be generalized to all other network figures in the present

Figure . Parameters for two data sets simulated according to a
unified structural equation model (uSEM), shown in lagged (
)
and contemporaneous (A) matrices and as network diagrams. The
same standardized parameters were implemented for all individu-
als and, thus, apply at the group level. Dashed lines reflect lagged
variable relations; solid lines reflect contemporaneous variable
relations;β-weights reflect themagnitude of the relations. (A) First
simulation, with larger lagged than contemporaneous parameters
(replicated for  individuals). (B) Second simulation, with smaller
lagged than contemporaneous parameters (replicated for 
individuals).

work. The second simulation (Figure 2B) contained rela-
tively small lagged parameters in 
1 and relatively large
contemporaneous parameters in A.

Empirical data

Participants were 16 children aged 4–7 years, divided into
8 same-sex dyads (4 female, 4 male). Dyads consisted of
a target child and an unrelated same-sex peer of the tar-
get’s choosing. Dyads participated in video-recorded 14-
to-15-minute play sessions designed to elicit rough-and-
tumble interactions. In a semienclosed area, childrenwere
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instructed to play with a jump-o-leen, pillow, ball, and
bobo-type doll (introducedmidway through the session).
Each child’s behavior was coded in 6-second epochs for
vigor of activity on a 1 (no activity) to 5 (multiple vigorous
movements throughout the majority of the epoch) scale and
for positive affect on a 1 (no expression) to 5 (continuous
positive vocal expression for themajority of the epoch) scale,
resulting in 4-variate time series of length 140 to 150. Two
raters coded each dyad, and theywere highly reliable, with
single measures intraclass correlation coefficients averag-
ing .80 (SD = .03) for vigor of activity and .79 (SD = .08)
for positive affect; only the codes from the first rater were
used in subsequent analyses.

Data analysis plan

Each data set was submitted to GIMME-MS with a
group-level criterion of 50%. When multiple solutions
were found, a series of steps were conducted in order
to select an optimal result; they are drawn from past
research on model selection and summarized in the
decision schematic presented in Figure 3. These cri-
teria were applied to multiple solutions generated at
the group level (prior to individual-level model fitting)
because multiple solutions were not expected at the indi-
vidual level due to the nature of the data sets; how-
ever, individual-level multiple solutions are further con-
sidered in the Discussion. Note that not all selection
criteria used in past work were applicable here. For
example, GIMME ensures that all identified relations are
significant for the group or individual, so there is no
need to remove solutions with statistically nonsignificant
relations.

First and when possible, additional information was
gathered in order to eliminate nonreplicated solutions
(MacCallum et al., 1993). For the simulated data sets,
this was accomplished through cross-validation in addi-
tional simulations with the same parameters. Only solu-
tions that were structural replicates of initial solutions
(i.e., had exactly the same pattern of relations) weremain-
tained for further evaluation; solutions that occurred only
once (between the initial and cross-validation analyses)
were eliminated. For the empirical data set, this step was
not possible because dyads were only assessed once, and
time series were too short to split.

Second, fit indices were used to evaluate how well each
(cross-validated) solution fit the observed (i.e., simulated
or empirical) data. The four indices used in GIMME (and
informed by Brown, 2006; Gates & Molenaar, 2012) were
considered: RMSEA� .05; NNFI� .95; CFI� .95; SRMR
� .05. The average (across replications or dyads) was cal-
culated for each index, and then the number of indices
indicating excellent fit was used to evaluate group-level

solutions, identifying a favored solution (i.e., the one with
the most indices indicating excellent fit).

Third, standardized residuals of the variables were also
used to evaluate how well each (cross-validated) solu-
tion fit the observed data. The largest residual was of
primary consideration as it provides an index for the
maximum degree of discrepancy between an estimated
solution and the observed data (MacCallum & Austin,
2000). The average (across replications or dyads) maxi-
mum residual was used to evaluate group-level solutions,
identifying a favored solution (i.e., the one with the small-
est maximum residual).

Fourth, the AIC (Akaike, 1974), a log-likelihood-based
information criterion, was used to compare the (cross-
validated) solutions. The AIC is a nonnormed relative
fit index that penalizes complexity, so models with few
parameters and small AICs are favored over models with
many parameters and highAICs. The average AIC (across
replications or dyads) was used to evaluate group-level
solutions, identifying a favored solution (i.e., the one with
the smallest AIC).

The (cross-validated) solution that was most fre-
quently favored by model selection metrics (i.e., fit
indices, maximum variable residual, and an information
criterion) was selected as optimal. If no solution was con-
sistently favored, then all solutions with equal support
were presented.

Results

Expected results were found for the first simulation that
contained large lagged versus contemporaneous relations:
GIMME-MS identified a single group-level solution. The
single solution accurately recovered the true model; the
six parameters that were simulated for all replications
were identified as group-level relations. This is shown in
Figure 4, with the mean magnitude (across 75 replica-
tions) of the relations and their 95% confidence inter-
vals, all of which included the true value (displayed in
Figure 2A). Moreover, the parameters were identified
according to their simulated order of magnitude, with the
large lagged parameters freed first and the small contem-
poraneous parameters freed last; iteratively, group-level
parameters ϕ3,1, ϕ2,2, ϕ1,1, ϕ4,4, α4,3, and α1,2 were freed.
Group-level relations fit the data well, indicated by mean
fit indices: RMSEA = .01; NNFI = 1.00; CFI = 1.00;
SRMR= .02. There were nomultiple solutions at the indi-
vidual level, but for one replication, an additional contem-
poraneous individual-level relation (α3,4) was found. This
relation was not in the true model, and although signifi-
cant, it was not essential to achieve excellent model fit, as
three of four fit indices indicated that a model excluding
this relation fit well.
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Figure . Schematic representation of the process used to select an optimal solution from the set of possible solutions output by GIMME-
MS. GIMME-MS= group-iterative multiple model estimation for multiple solutions; RMSEA= root mean squared error of approximation;
NNFI = nonnormed fit index; CFI = comparative fit index; SRMR = standardized root mean square residual; AIC = Akaike information
criterion.

Expected results were also found for the second sim-
ulation that contained large contemporaneous versus
lagged relations: GIMME-MS identified multiple group-
level solutions. Specifically, five solutions were found (a,
b, c, d, e); these are displayed in Figure 5A as branch-
ing columns depicting the order in which parameters
were freed. Four iterations resulted in equal modification
indices for two parameters; these are the bifurcating solu-
tion paths in the figure. In each of these iterations, the
equal indices occurred early in the model-fitting process
and concerned contemporaneous relations between the

Figure . Diagram showing the single group-level solution from
GIMME-MS analysis of data from Simulation , with relatively
large lagged and small contemporaneous relations. The simulated
parameters were identified as group-level relations among vari-
ables. Dashed lines reflect lagged variable relations; solid lines
reflect contemporaneous variable relations; β-weights are the
meanmagnitude of the relations (averaged across  replications);
bracketed values are % confidence intervals of the estimated
relations (see Figure A).

same two variables: α3,1 and α1,3; α4,2 and α2,4; α3,2 and
α2,3. Parameters trimmed from the group model due to
nonsignificance are crossed out in the figure. After trim-
ming, solution d was not unique; it replicated the struc-
ture of solution c and was therefore excluded from the
solution set.

To select an optimal solution, additional analyses were
conducted following the steps in the decision schematic
depicted in Figure 3. First, additional information was
used to cross-validate the findings. Specifically, GIMME-
MS was conducted on another set of data simulated
according to the same parameters (i.e., the Simulation 2
parameters shown in Figure 2B). Results were similar to
those of the initial analysis: As shown in Figure 5B, five
group-level solutions were identified (f, g, h, i, j), and four
iterations resulted in equal modification indices for two
contemporaneous parameters (α3,1 and α1,3; α4,2 and α2,4;
α3,2 and α2,3). The three solutions highlighted in gray (g,
h, j) were replicates as they had the same structure (i.e.,
pattern of freed relations) but not necessarily the same
sequence (i.e., relations may have been freed in different
orders) as solutions from the initial analysis. The cross-
validated solutions are shown as diagrams in Figure 6, and
they were the only solutions to be further evaluated.

Second, fit indices were used to evaluate how well
cross-validated solutions b, c, and e fit the simulated data.
Table 1 shows the average RMSEA,NNFI, CFI, and SRMR
for each group-level solution. According to these indices,
all solutions provided an excellent fit to the data, so there
was not a favored solution.

Third, standardized variable residuals were used to
evaluate howwell the cross-validated solutions fit the sim-
ulated data. Table 1 shows the average standardized resid-
uals for each variable in each solution, with the largest
residual in bold. Solution c had the largest residual, fol-
lowed by solution b, then solution e. These results favor
solution e, suggesting that its estimates minimize misfit
with the simulated data.
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Figure . Diagrams showing the group-level solutions fromGIMME-MS analysis of data from Simulation  (columns), listing the parameter
freed in each iteration of each solution (rows). Branches, or bifurcations, reflect iterations in which equivalent modification indices were
found. Parameters that are crossed out were removed from the solution because they were not significant at the group criterion when
freed in the context of all other relations. The crossed-out solution was not unique. (A) Results from analysis of the initial simulated data
set. (B) Results from analysis of the cross-validation data set, with replicated solutions highlighted in gray; these solutions were identical
in structure, but not necessarily in sequence, to a solution presented in (A).
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Figure . Diagrams of the three cross-validated group-level solutions (shown in Figure A) from GIMME-MS analysis of data from Simula-
tion , with relatively small lagged and large contemporaneous relations. Dashed lines reflect lagged variable relations; solid lines reflect
contemporaneous variable relations. (A) Solution b is suboptimal. (B) Solution c is suboptimal. (C) Solution e is optimal according tomodel
comparison metrics (see Table ) and contains β-weights showing the mean magnitude of the relations (averaged across  replications);
the pattern of group-level relations matches the simulated parameters, which are within the bracketed % confidence intervals of the
estimated relations (see Figure B).

Fourth, the AIC was used to compare the cross-
validated solutions. Table 1 shows the average AIC for
each group-level solution. Solution e had the lowest AIC,
followed by solution c, then solution b. Thus, results again
favor solution e, suggesting that it provides themost infor-
mation given the number of parameters.

Solution e was selected as optimal. It was one of three
cross-validated solutions in an additional GIMME-MS
analysis, and it was favored over the other two solutions

by model comparison metrics, having the lowest maxi-
mum standardized residual and the lowest AIC. Solution
e is also the correct solution. It accurately recovered the
true model; the six parameters that were simulated for all
replications were identified as group-level relations. This
is shown in Figure 6C, with the mean magnitude (across
75 replications) of the relations and their 95% confidence
intervals, all of which included the true value (displayed
in Figure 2B). There were no multiple solutions at the

Table . Model comparison metrics for cross-validated group-level solutions from Simulation  data.

Solution b (Figure A) Solution c (Figure B) Solution e (Figure C)

χ-based fit indices
RMSEA . . .
NNFI . . .
CFI . . .
SRMR . . .

Standardized residuals
Variable  .65 . .
Variable  . .68 .
Variable  . . .
Variable  . . .46

Information criterion
AIC . . .

Note. Maximum residuals for each solution are boldface. RMSEA = root mean squared error of approximation; NNFI = nonnormed fit index; CFI = comparative fit
index; SRMR= standardized root mean square residual; AIC= Akaike information criterion.
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individual level, but two replications in solution e con-
tained additional individual-level relations that were not
in the true model: a contemporaneous parameter (α4,1)
was freed in one replication and a lagged parameter (ϕ4,2)
was freed in another replication. The individual-level rela-
tions, however, were not essential to achieve excellent
model fit, as three of four fit indices indicated that models
excluding the relations fit well.

Moreover, GIMME-MS was essential for identifying
the correct solution as solution ewas not the result of stan-
dard GIMME analysis (i.e., without multiple solutions)
of Simulation 2 data. Additional exploratory analyses in
which the Simulation 2 data were submitted to standard
GIMME revealed a group-levelmodel identical to the first
seven parameters in solution a (i.e., α3,1, ϕ4,2, α2,3, ϕ1,3,
ϕ3,3, ϕ4,1, and ϕ4,4).

Finally, additional simulation results are reported in
Appendix B, demonstrating that GIMME-MS is robust
to variations in sample size, time series length, and rel-
ative weights of relations. The first two simulations show
that GIMME-MS recovers accurate parameter estimates
for Simulation 2 data even when sample size (N = 15)
and the number of timepoints (T = 75) are small. The
third simulation shows that GIMME-MS recovers accu-
rate parameter estimates even in a sparsemodel with large
lagged and contemporaneous relations.

Expected results were found for the empirical data set:
GIMME-MS identified multiple group-level solutions.
Specifically, two solutions were found; there was a bifur-
cation early in the analysis that was due to a large con-
temporaneous relation between the positive affect of the
target and peer. The solutions are shown as diagrams in
Figure 7. The first (Figure 7A) contained three autore-
gressive relations, which were freed after the contempo-
raneous relation from peer to target positive affect. The
second (Figure 7B) contained the same three autore-
gressive relations, which were freed after the contem-
poraneous relation from target to peer positive affect.
Thus, the only difference between the two group-level
solutions was the direction of the contemporaneous
relation.

Additional analyses were conducted in order to select
an optimal group-level model, following the steps in the
decision schematic depicted in Figure 3. No additional
information was available for cross-validation, so model
comparison metrics were exclusively used; the results are
shown in Table 2. No fit indices indicated that a group-
level solution fit the empirical data well, likely because
dyad-specific relations were not yet included in the solu-
tions. Standardized variable residuals favored the first
solution as it had a smaller maximal residual than the
second solution. The information criterion also favored
the first solution as it had a lower AIC than the

second solution. Thus, the first solution was selected as
optimal because it was favored over the second solu-
tion by two model selection criteria. Figure 7A shows the
mean magnitude (across dyads) of the group-level rela-
tions and their 95% confidence intervals for this solution.
Individual-level relations were then added to the selected
group-level model. No individual-level multiple solutions
were generated, but one dyad received two individual-
level relations; five dyads received one individual-level
relation; and two dyads did not receive any individual-
level relations. The resulting models all had excellent fit,
according to average fit indices: RMSEA = .01, NNFI =
1.00, CFI = .99, and SRMR = .06.

Discussion

Multiple solutions resulted from group-level uSEM anal-
ysis of simulated and empirical time series data that con-
tained large contemporaneous relations. A new version
of GIMME, which reveals relations among variables at
different time scales (lagged and contemporaneous) and
at different levels of analysis (group and individual)—
dubbed GIMME for multiple solutions (GIMME-MS)—
was developed to identify the complete set of possible
solutions. Selection procedures validated in past research
(Akaike, 1974; Brown, 2006; Gates & Molenaar, 2012;
MacCallum&Austin, 2000; MacCallum et al., 1993) were
then implemented in order to choose the optimal solution
from the set of possibilities. These procedures included
cross-validation in a new data set (when one was avail-
able) and using metrics, such as maximum variable resid-
uals and the AIC.

This research is important, filling a knowledge gap in
the literature. Past work has shown that uSEM imple-
mented in GIMME is an optimal structural VAR instan-
tiation because it reveals lagged and contemporaneous
relations among variables with greater accuracy than
other approaches (Gates &Molenaar, 2012). Nothing was
known, however, about the uniqueness ofGIMMEresults,
even though there was reason to think thatmultiple, com-
peting solutions could be present, since uSEM is con-
ducted within an SEM framework and multiple solutions
are a characteristic of cross-sectional path models (Mac-
Callum et al., 1993; Raykov & Marcoulides, 2001).

Expected results were found during GIMME-MS anal-
ysis of three data sets. The first data set was simu-
lated with four variables and contained four moder-
ate or large lagged relations and two small contempo-
raneous relations. GIMME-MS recovered a single solu-
tion, which accurately recovered the pattern of true
group-level relations, with the true parameter values
falling within the 95% confidence intervals of the mean
estimated parameters. The lagged relations (with large
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Figure . Diagrams of the two group-level solutions from GIMME-MS analysis of empirical data. Dashed lines reflect lagged variable rela-
tions; solid lines reflect contemporaneous variable relations. (A) The first solution is optimal according to model comparison metrics (see
Table ) and contains β-weights showing the meanmagnitude of the relations (averaged across  dyads) with bracketed % confidence
intervals. (B) The second solution is suboptimal.

modification indices) were freed before the contempo-
raneous relations (with small modification indices). The
lagged relations estimated in uSEM resemble relations in
standard VARmodels, and it is known that the latter gen-
erally yield unique solutions (Lütkepohl, 2005).

The second data set was simulated with four variables
and contained three moderate or large contemporane-
ous relations and three small lagged relations. GIMME-
MS recovered multiple solutions because the contempo-
raneous relations (with large modification indices) were
freed before the lagged relations (with small modifica-
tion indices); the contemporaneous relations estimated
in uSEM resemble relations in directed path models as
obtained in standard cross-sectional research, and it is
known that the latter yield multiple solutions (MacCal-
lum et al., 1993). Specifically, GIMME-MS found five (but
only four unique) solutions. All were plausible and insti-
gated substantively different interpretations.

Together, results from the simulated data confirmed
expectations that multiple solutions were more likely
to result from a data set containing large contempora-

neous relations than from one containing large lagged
relations. Expectations were based on knowledge of itera-
tive model building via modification indices, which indi-
cate how much a model’s χ2 will be reduced if a par-
ticular parameter is freed in the subsequent iteration.
When contemporaneous relations are large, modification
indices indicate that a contemporaneous relation should
be freed in the first iteration. At this early point in the
sequence of Lagrange multiplier tests, however, there is
no information available to determine the directionality
of the contemporaneous relation. For example, assume
that modification indices show that a contemporaneous
relation between variables m and n should be freed in
the first iteration; since no variance has been explained in
either variable, freeing γm,n or γ n,m will improve model
fit by the same amount (just as the same amount of vari-
ance is explained in a regression of x on y or of y on x).
Instead of using arbitrary decision criteria (e.g., infinites-
imal differences in Lagrange multiplier tests reflecting
machine precision as occurs during the automatic search
in LISREL) to fit a directed relation or instead of fitting

Table . Model comparison metrics for group-level solutions from empirical data.

First solution (Figure A) Second solution (Figure B)

χ-based fit indices
RMSEA . .
NNFI . .
CFI . .
SRMR . .

Standardized residuals
Target activity .95 .
Target affect . 1.00
Peer activity . .
Peer affect . .

Information criterion
AIC . .

Note. Maximum residuals for each solution are boldface. RMSEA = root mean squared error of approximation; NNFI = nonnormed fit index; CFI = comparative fit
index; SRMR= standardized root mean square residual; AIC= Akaike information criterion.
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a bidirectional relation between the variables, GIMME-
MS combined with model selection criteria determines
the directionality of the contemporaneous relation by cre-
ating different solution paths, with each path containing
the freed relation in an opposite direction, before com-
mencing iterative model generation. (GIMME-MS does
not, however, restrict variables from reciprocally influenc-
ing one another as it is possible for contemporaneous and
lagged relations to be freed in both directions between
the variables.) However, when lagged relations are large,
and thus freed in the first iteration, the temporal nature of
the time series data provides statistical context that can be
used to infer directionality. For example, if the autoregres-
sive component of m was freed in the first iteration, then
the second iteration modification indices for the directed
contemporaneous relations between m and n will not be
equal or lead to multiple solutions (just as the amount of
variance explained differs in a regression of x on y or of y
on x when a covariate is included in the models); m will
be able to explain more variance in n than n will be able
to explain in m because some variation in m has already
been accounted for by the autoregressive component.

Informed by past work on multiple solutions, deci-
sion criteria to be used when selecting a solution from a
set of possibilities generated by GIMME-MS were imple-
mented. The criteria are cross-validation in another data
set, evaluation of model fit indices, evaluation of model
fit using the maximum standardized variable residuals as
an indicator of model misfit, and comparison of models
using an information criterion. Implementation of these
criteria resulted in selection of the correct solution (i.e.,
solution e) for the data set generated by Simulation 2;
this is notable because standard GIMME analysis of the
same data set resulted in a different solution. The selected
solution had the fewest parameters, so it is not surpris-
ing that it also had the lowest AIC since the AIC penalizes
complexity. For the same reason, however, it is notewor-
thy that the selected solution had the lowest maximum
residual as complexity is implicitly rewarded by this met-
ric (i.e., a solution with many parameters has the poten-
tial to explain more variance than a solution with few
parameters). This solution accurately recovered the pat-
tern of true group-level relations, with the true parameter
values falling within the 95% confidence intervals of the
mean estimated parameters. This convincingly showcases
how selection metrics can be used to identify an optimal
solution—when the set of all possible solutions has been
generated by GIMME-MS.

An important test of the utility of GIMME-MS was
conducted when a third, empirical data set was submit-
ted to the program. The data set contained four vari-
ables, reflecting ratings of the vigor of activity and positive
affect for each child participating in a dyadic play session

intended to elicit rough-and-tumble interactions. Data
from eight dyads were analyzed. GIMME-MS recovered
two solutions, with a contemporaneous relation between
the positive affect of the two children freed before three
autoregressive relations; the direction of the contempora-
neous relations was opposite in the two solutions. Cross-
validation could not be conducted as no additional data
were available, so the optimal solution was selected via fit
indices, maximum standardized residuals, and an infor-
mation criterion. The first solution was selected; it was
favored by two metrics, having the smallest mean maxi-
mum residual and the lowest AIC. It is important to note,
however, that the margin of difference between the two
solutions was small. Nonetheless, application of GIMME-
MS to this empirical data set highlighted the value of the
program for substantive research. Due to the similarity in
the group-level solutions, it also highlighted the impor-
tance of explicitly selecting a solution based upon a set
of predetermined criteria over allowing seemingly ran-
dom differences in modification indices (e.g., based on
machine precision) to determine the selection.

There are some important points to consider when
interpreting results from the current study and when
applying GIMME-MS and the model selection proce-
dures used here to other data sets. First, GIMME-MS cur-
rently implements lagged processes of the first order. This
has been successful in uSEM applications to brain and
behavioral data sets (Beltz, Beekman, et al., 2013; Beltz,
Gates, et al., 2013). However, it might not be appropri-
ate for all data sets. A posteriori model testing procedures
can be used to determine whether a first-order uSEM is
sufficient or whether a higher-order uSEM is needed in
applications of GIMME (Beltz & Molenaar, 2015). There
is a trade-off between the presence of multiple solutions
and the temporal order of a data set. In general, time
series with long measurement intervals have low tempo-
ral orders (e.g., lag one is sufficient), large contempora-
neous relations, and small lagged relations compared to
those with short measurement intervals, which have high
temporal orders (e.g., lags greater than one are required),
small contemporaneous relations, and large lagged rela-
tions. Multiple solutions are more prevalent in the for-
mer than in the latter and, therefore, are expected in a
behavioral daily diary data set with measurements every
24 hours but not in a task-related functionalmagnetic res-
onance imaging data set with measurements every 2 sec-
onds (on which past GIMME applications have focused).

Second, the decision schematic used here can be
applied at both the group and individual levels. At
the group level, the selection metrics (fit indices, vari-
able residuals, information criteria) must be averaged
across individuals before comparing solutions, but the
metrics can be assessed directly (i.e., no averaging is
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necessary) at the individual level. Only group-level evalu-
ations were conducted here because the grouping proce-
dures utilized byGIMMEare unique andpartially respon-
sible for its success over other structural VAR and time
series analysis approaches and because therewere nomul-
tiple solutions at the individual level. Had there been
multiple solutions at the individual level, the generaliza-
tion of the presented multiple solutions procedures from
the group level to the individual level would have been
straightforward. Individual-level multiple solutions may
occur in person-specific data or in group-level data that
are very heterogeneous or that contain a sparse group-
level structure. When working with person-specific data,
theAIC is a promisingmetric for selecting a solution from
a set of possibilities (see, e.g., Wright, Beltz, Gates, Mole-
naar, & Simms, 2015). It does not require solutions to
be nested and is meaningful even when variables in the
model are unexplained (e.g., person-specific solutions are
often sparse and havemaximum standardized residuals of
1.00). Further exploration of this topic is necessary.

Third, themodel selection procedures can bemodified
tomeet the needs of a specific data set or the preferences of
a researcher. For example, the results presented here sug-
gest that fit indices may not be a discriminating criterion
for all data sets as they twice failed to favor a solution. In
the simulated data set, fit indices indicated that all solu-
tions had excellent fit, likely due to homogeneity in the
data and the use of the RMSEA, NNFI, CFI, and SRMR by
GIMME-MS in model building. In the empirical data set,
fit indices indicated that no solution had an excellent fit,
likely due to heterogeneity in the data, which is accounted
for by dyad-specific relations that had not yet been added
when group-level solutions were evaluated. Researchers
could elect to use different fit indices as selection criteria if
they are extensively validated in simulation experiments,
as has been done for the indices used here (Gates &Mole-
naar, 2012). Researchers could also elect to use theoretical
rationale as a selection criterion.

Fourth, there are additional features of GIMME-MS
that can be explored in future investigations. One exam-
ple concerns the criterion value: It can be modulated,
allowing users to determine the percent of participants for
whom a relation must be significant in order for that rela-
tion to be freed at the group level. The criterion value was
50% for the current study; this is lower than the suggested
75% (see Gates & Molenaar, 2012) in order to accom-
modate the small, heterogeneous behavioral data set ana-
lyzed here (compared to the large, relatively homoge-
nous neuroimaging data sets used in prior applications
of GIMME). Researchers using GIMME-MS for other
behavioral applications should similarly consider alter-
ing the criterion value to suit their data set and research
question as the optimal value may vary. Another example

concerns data with external input (i.e., experimental con-
ditions): They can be analyzed with an extended uSEM
(euSEM) in GIMME-MS (see Gates & Molenaar, 2012;
Gates et al., 2011). In these analyses, lagged and contem-
poraneous direct effects of the conditions on the variables
are modeled. Bilinear effects, or lagged relations among
variables that are only present during a condition, are also
modeled. Because of the time series length required to run
euSEM models, they are currently more prevalent in the
brain sciences (e.g., Hillary, Medaglia, Gates, Molenaar, &
Good, 2014) than in the behavioral sciences.

Conclusion

The value of person-specific time series analysis
approaches is beginning to be recognized in psycho-
logical science, and structural VARs, which map lagged
and contemporaneous relations among time-indexed
variables, hold great potential in this regard. uSEM is an
accurate structural VAR instantiation built on an SEM
framework that—when implemented in a data-driven
fashion with GIMME—models lagged and contempo-
raneous relations at the group and individual levels.
Although its accuracy has been established, until now,
the issue of multiple GIMME solutions had gone unad-
dressed. A new version of GIMME, dubbed GIMME-MS,
was developed to rectify this, generating separate solution
paths when Lagrange multiplier tests indicate that mul-
tiple relations equally and maximally improve model fit
at a given iteration. Results from simulated and empirical
data showed that multiple solutions were present when
there were large contemporaneous relations in a data
set, an expected finding because multiple solutions are
a characteristic of cross-sectional path models. A series
of selection procedures, including cross-validation, fit
indices, variable residuals, and an information crite-
rion, demonstrated how the optimal solution could be
selected from the possibilities offered by GIMME-MS.
Thus, GIMME-MS is a novel and accurate analysis
approach, reflecting the state of the science for mapping
personalized behavioral time series data.
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Appendix A

Figure A1 is an alternate representation of Figure 2A. It
is a diagram showing the parameters used in the first
simulation. Dashed lines between variables reflect lagged
relations (i.e., from t - 1 to t); solid lines between vari-
ables reflect contemporaneous relations (e.g., at the same
t); β-weights reflect the magnitude of the relations; small
solid lines reflect variances standardized at 1; and ellipses
reflect the continuation of the variables in time. All other
network figures presented in the current work (Figures 2,
4, 6, 7, and those in Appendix B) can be depicted using
this alternate representation.
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Figure A. Alternate representation of the network shown in Fig-
ure A. See Appendix A text for description.

Appendix B

Additional simulations were conducted to examine the
performance of GIMME-MSwhen sample size (N), num-
ber of timepoints (T), and strength of relations (β) might
challenge the generation and selection of the correct map.
Three simulations are reported, with the first reducing
N with respect to initial simulations, the second reduc-
ing N and T with respect to initial simulations, and the
third containing sparse, large lagged and contemporane-
ous relations.

Simulation with smallN

A structural VAR data set with the same parameters as
Simulation 2 (T = 300; see Figure 2B for β weights) was
simulated, but data were generated for N = 15 individu-
als (instead of 75). The simulated data were submitted to
GIMME-MS. Five group-level solutions were generated,
two of which were unique and cross-validated in a second
data set simulated with identical parameters. Both cross-
validated solutions fit the data well according to absolute
fit indices as group-level means for all four indices indi-
cated excellent fit. One solution had a lower mean stan-
dardizedmaximum residual (.44 vs. .68) and AIC (411 vs.
414) than the other, so it was selected as optimal. It is
shown in Figure B1 with the mean magnitude (across
15 individuals) of the relations and their 95% confidence
intervals. Comparison of these results to the simulated
parameters in Figure 2B shows that GIMME-MS recov-
ered the true model, with the β weights of the simulated
relations fallingwithin the confidence intervals of the esti-
mates. Thus, GIMME-MS is accurate even with a rela-
tively small sample size.

Figure B. Optimal group-level solution selected from GIMME-
MS analysis of data generated using the same parameters as
simulation , but with a small sample (N = ). Dashed lines
reflect lagged variable relations, solid lines reflect contempo-
raneous variable relations, β-weights are the mean magnitude
of the relations (averaged across  replications), and brack-
eted values are % confidence intervals of the estimated
relations.

Simulation with smallN and T

A structural VAR data set with the same parameters as
Simulation 2 (see Figure 2B for β weights) was simu-
lated, but data were generated for N = 15 individuals
(instead of 75) and T= 75 (instead of 300). The simulated
data were submitted to GIMME-MS. Four group-level
solutions were generated, two of which were unique and
cross-validated in a second data set simulated with identi-
cal parameters. Both cross-validated solutions fit the data
well according to absolute fit indices as group-level means
for at least two of four indices indicated excellent fit. One
solution had a lower mean standardized maximum resid-
ual (.49 vs. .68) and AIC (170 vs.177) than the other, so
it was selected as optimal. It is shown in Figure B2 with
the mean magnitude (across 15 individuals) of the rela-
tions and their 95% confidence intervals. Comparison of
these results to the simulated parameters in Figure 2B
shows that GIMME-MS recovered the true model, with
the β weights of the simulated relations falling within
the confidence intervals of the estimates; note that
the size of the confidence intervals increased with the
decrease in timepoints. Thus, GIMME-MS is accurate
even with a relatively small sample size and time series
length.
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Figure B. Optimal group-level solution selected from GIMME-MS
analysis of data generated using the same parameters as simu-
lation , but with a small sample (N = ) and number of time
points (T= ). Dashed lines reflect lagged variable relations, solid
lines reflect contemporaneous variable relations, β-weights are
the mean magnitude of the relations (averaged across  replica-
tions), and bracketed values are % confidence intervals of the
estimated relations.

Simulation with sparse, large lagged and
contemporaneous relations

A structural VAR data set was simulated according to
the standardized uSEM parameters (top portion of Figure
B3); note that the map is sparse, containing only three
relatively large standardized relations. The data set con-
sisted of a relatively small sample (N = 15) and rela-
tively short time series (T = 75). The simulated data
were submitted to GIMME-MS. A single group-level
solution was generated, with ϕ3,4 first estimated, followed
by α4,3, and then ϕ1,1. The solution fit the data well
according to absolute fit indices as group-level means for
three of four indices indicated excellent fit: RMSEA =
.03; NNFI = .98; CFI = .98; SRMR = .08. The solution

is shown (bottom portion of Figure B3) with the
mean magnitude (across 15 individuals) of the rela-
tions and their 95% confidence intervals. Comparison
of these results to the simulated parameters shows that
GIMME-MS recovered the truemodel, with theβ weights
of the simulated relations falling within the confidence
intervals of the estimates. Even though all simulated
relations were relatively large, the largest lagged rela-
tion was estimated first, providing statistical informa-
tion for the modification indices to accurately determine
the direction of the contemporaneous relation. Thus,
GIMME-MS is accurate even when relative relations are
large and the sample and number of timepoints are
small.

Figure B. Parameters for a sparse data set simulated for a small
sample (N = ) and number of time points (T = ) according to
a uSEM, shown in lagged (
) and contemporaneous (A) matri-
ces and as a network (top), and results of GIMME-MS analysis of
the simulated data (bottom). In the networks, dashed lines reflect
lagged variable relations, solid lines reflect contemporaneous vari-
able relations, β-weights are the true (top) and estimated mean
(bottom) magnitude of the relations (averaged across  replica-
tions), and bracketed values are % confidence intervals of the
estimated relations.
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