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ABSTRACT
Network science is booming!While the insights and images afforded by networkmapping techniques
are compelling, implementing the techniques is often daunting to researchers. Thus, the aim of this
tutorial is to facilitate implementation in the context of GIMME, or group iterativemultiplemodel esti-
mation. GIMME is an automated network analysis approach for intensive longitudinal data. It creates
person-specific networks that explain how variables are related in a system. The relations can signify
current or future prediction that is common across people or applicable only to an individual. The
tutorial begins with conceptual andmathematical descriptions of GIMME. It proceeds with a practical
discussion of analysis steps, including data acquisition, preprocessing, program operation, a posteriori
testing of model assumptions, and interpretation of results; throughout, a small empirical data set is
analyzed to showcase the GIMME analysis pipeline. The tutorial closes with a brief overview of exten-
sions to GIMME that may interest researchers whose questions and data sets have certain features. By
the end of the tutorial, researcherswill be equipped to begin analyzing the temporal dynamics of their
heterogeneous time series data with GIMME.

Networkmapping with GIMME

People are unique, complex, and ever-changing, despite
the assumptions of homogeneity made by many
researchers and statistical analyses (Molenaar, 2004).
This is seen when experimental manipulations show
an overall effect, but closer examinations reveal that the
effect was relatively weak for one subset of individuals and
particularly strong for another subset. It is also seen when
linear regression analyses fail to detect a relationship
between two variables, but additional scrutiny divulges
that a relationship actually exists with functional forms
(e.g., linear, quadratic, logistic) that differ across people.
Interest in network analysis, a set ofmethods for quantify-
ing interconnectedness among variables, is piquing with
increasing acknowledgement of this nuanced and knotty
nature of psychological data. Consequently, network
conceptualizations of human brain function, behavior,
and mental and physical health are becoming more and
more prevalent (e.g., Bajardi et al., 2011; Borsboom &
Cramer, 2013; Smith, 2012).

Networks are particularly powerful when they are used
to delineate the temporal dynamics of a unique system,
pushing scientific understanding beyond cross-sectional
group averages. Consider the following example (Beltz,
Beekman, Molenaar, & Buss, 2013). Sex differences in
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USA.

children’s play behavior are established; boys are more
active than girls, and girls play more cooperatively than
boys (Blakemore, Berenbaum, & Liben, 2009). Relatively
little is known, however, about the dynamics underlying
these interactions. Is boys’ activity influenced by the
activity of their peers, and how do girls’ affective expe-
riences during cooperation unfold over time? To answer
these questions, play dynamics were studied in groups
of three or four same-sex children during a 15-minute
laboratory session. Each child’s positive affect and vigor of
activity were rated on a 1 (none) to 5 (intense) scale every
10 seconds, resulting in time series of 90 ratings for each
group. When traditional analyses were conducted that
collapsed ratings across children and groups, an expected
sex difference was found in positive affect, with girls
displaying higher levels than boys, with the sex difference
in activity level not reaching statistical significance. But,
when the same ratings were entered into a time series
network analysis (called unified structural equationmod-
eling; Gates, Molenaar, Hillary, Ram, & Rovine, 2010),
sex differences in temporal dynamics became apparent.
For girls more than boys, positive affect characterized the
play of the group – at a time lag: One girl’s positive affect
predicted another girl’s positive affect at the next time
point (10 seconds later), highlighting a delay in emotion
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contagion. For boys more than girls, vigor of activity
characterized the play of the group – instantaneously:
One boy’s vigor predicted another boy’s vigor at the same
time point, highlighting an immediacy of activity con-
tagion. Thus, this network mapping approach exposed
the temporal dynamics underlying sex differences in play
that were missed by traditional analyses.

If networks have the capability of illuminating the
dynamics of psychological processes, then why are they
only now beginning to be integrated into psychological
science? Perhaps researchers are anticipating or experi-
encing roadblocks in their application. Researchers may
wonder what types of questions network models help
them ask and answer, if it matters which network analysis
technique they use, what type of data they must have, if
there are restrictions on the number of participants, vari-
ables, or missing cases that can exist in their data set, how
they actually run the analysis, what software they need,
and if they will be able to interpret results with respect to
other data in their sample.

The goal of this tutorial is to answer questions like these
with respect to group iterative multiple model estimation
(GIMME; Gates & Molenaar, 2012), leaving researchers
equipped to conduct state-of-the-art temporal network
analyses on their own time series data. To accomplish
this, the tutorial is divided into three parts. Part I includes
a basic explanation of GIMME and the mathematics
underlying it. Part II contains procedures for conducting a
GIMME analysis, including data acquisition, preprocess-
ing, general program operation, assumption testing, and
results interpretation. Throughout this section, an empir-
ical example is used to illustrate the analysis steps. Part III
provides brief overviews of extensions toGIMME, such as
exogenous influences on networks, identification of sub-
groups, and the generation of multiple well-fitting solu-
tions. The tutorial ends with a discussion of limitations.

Part I: Group iterativemultiple model estimation
(GIMME)

There are a variety of network analysis approaches
for time series data (for examples and reviews, see
Bringmann et al., 2016; Bulteel, Tuerlinckx, Brose, &
Ceulemans, 2016; Friston, Harrison, & Penny, 2003;
Henry & Gates, 2017; Molenaar & Lo, 2016; Ramsey,
Hanson, & Glymour, 2011; Smith et al., 2011), and
researchers should carefully weigh the pros and cons of
each with respect to their scientific aims and character-
istics of their data. GIMME has been shown to be valid
and reliable, outperforming most competitors in large-
scale simulation studies in neuroscience, the field from
which it originated (Gates & Molenaar, 2012). GIMME
detected more true edges and fewer spurious edges than

38 other undirected and directed functional connectiv-
ity approaches, ranging from partial correlations and
coherence analyses to Granger causality inferred from
autoregressivemodels and a variety of Bayesian net meth-
ods (for details on data simulation, see Smith et al., 2011).
Since those simulations, GIMME has provided novel
insights into the brain and behavioral processes under-
lying substance use (Beltz et al., 2013; Nichols, Gates,
Molenaar, & Wilson, 2014; Zelle, Gates, Fiez, Sayette, &
Wilson, 2016), psychopathology (Beltz, Wright, Sprague,
& Molenaar, 2016; Gates, Molenaar, Iyer, Nigg, & Fair,
2014; Price et al., 2017), cognition (Grant, Fang, & Li,
2015), language acquisition (Yang, Gates, Molenaar, &
Li, 2015), and olfaction (Karunanayaka et al., 2014),
among other areas of inquiry. Moreover, GIMME has
been fully-automated and boasts multiple features and
extensions that make it suitable for a plethora of research
questions and data sets (Beltz & Molenaar, 2016; Gates
& Molenaar, 2012; Gates, Lane, Varangis, Giovanello, &
Guiskewicz, 2017; Lane, Gates, & Molenaar, 2017).

GIMME networks

GIMME creates networks, or in this context, statistical
models that explain patterns of temporal covariation in
a system. Networks contain nodes and edges (for a review
and discussion, see Sporns, 2011). Nodes are elements in
a system, such as kids in a play group, regions of inter-
est (ROIs) in the brain, or variables used to operational-
ize constructs in a psychological study. With respect to
temporal networks, edges are connections, relations, or
paths between nodes that signify an association. Like
GIMME, many network analysis tools were introduced
to the psychological community via the neuroscience lit-
erature, but increasingly, researchers are adapting them
to enable innovative analyses of a broad range of psy-
chological phenomena (e.g., Borsboom & Cramer, 2013;
Bringmann et al., 2016; Bulteel et al., 2016; Molenaar &
Lo, 2016).

The particular networks GIMME creates are referred
to as directed functional networks (Friston, Moran, &
Seth, 2013), especially in the neuroscience literature.
They are directed because the edges point from one node
to another, signifying statistical prediction. They are
functional because they concern statistical dependen-
cies in observed data across time, such as blood oxygen
level-dependent (BOLD) signal in functional magnetic
resonance imaging (fMRI) data. There is a distinction
between the edges in GIMME-created networks. Some
edges are lagged, indicating that the relation between the
nodes is separated in time, while other edges are contem-
poraneous, indicating that the relation between the nodes
is instantaneous, or occurs at the same point in time.
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The inclusion of edges that reflect different temporal
dimensions helps ensure that all time-based information
in dynamic data is reflected in the network.

The networks GIMME creates are person-specific:
There is a personalized result for each member of a
sample that contains edges common across the sample
(i.e., group-level relations) and edges unique to the
person (i.e., individual-level relations). The group-level
edges reflect pattern homogeneity in network structure
and facilitate interpretation and generalization of results,
while the individual-level edges reflect heterogeneity and
honor the extreme variability in psychological processes
present across people and time (see Finn et al., 2015;
Molenaar, 2004). Moreover, this combination of group-
and individual-level parameters is in large part respon-
sible for GIMME’s outperformance of 38 competing con-
nectivity approaches in simulations (Gates & Molenaar,
2012), as most alternatives only model networks at the
group- or the individual- level (e.g., Friston et al., 2003;
Ramsey et al., 2011; Smith et al., 2011).

A review of the first empirical application of GIMME
elucidates some of the features of the analysis and demon-
strates its utility for time-indexed data. This application
was to longitudinal functional magnetic resonance imag-
ing (fMRI) data of college students completing a go/no-
go task in which pictures of alcoholic or non-alcoholic
beverages were the response cues (Beltz et al., 2013). Stu-
dents completed the task three times: during the summer
before college, the first semester of college, and the second
semester of college. GIMME analyses focused on blood
oxygen level-dependent signal from eight ROIs, with four
representing an emotion processing network (bilateral
amygdala and orbitofrontal cortex) and four represent-
ing a cognitive control network (bilateral dorsolateral pre-
frontal cortex and rostral and dorsal anterior cingulate
cortex). Figure 1 shows the resulting network for a single
participant completing the task the summer before col-
lege. The eight ROIs are nodes, and they are connected
by directed edges that either are present for everyone in
the sample (thick lines) or present only for the exemplar
individual (thin lines), and that either reflect relations at
the current time point (solid lines) or relations at a future
time point (dashed lines). Edges are statistically signif-
icant for the individual or majority of the sample even
though they differ in magnitude (evidenced by varying
β weights). Standard fit indices (e.g., root mean squared
error of approximation) are provided to show that the net-
workmodel is an excellent reflection of the observed data.
Across participants, longitudinal measurements showed
a denser cognitive control network (i.e., a network with
more edges) in the first semester of college than in the
summer before college and the second semester of college.
This is consistent with behavioral data, which showed a

Figure . GIMME neural network for a single participant complet-
ing a go/no-go task in which images of alcoholic beverages were
the response cues (Beltz et al., ). Data are from the first wave
(i.e., summer before college) of a longitudinal fMRI study of neu-
ral responses to alcohol during the college transition, and the net-
work fit these data well according to alternative fit indices (CFI =
., NNFI = ., RMSEA = ., SRMR = .). Thick lines are
group-level edges estimated for all participants (in the firstwave of
the study), thin lines are individual-level edges estimated for this
participant, solid lines are contemporaneous edges, dashed lines
are lagged edges, and edge magnitude is shown by β weights.
See text for description of fit indices. OFC: orbitofrontal cortex;
ACC: anterior cingulate cortex; DLPFC: dorsolateral prefrontal cor-
tex. (Reproduced with permission from Elsevier from Beltz et al.,
.)

spike in negative consequences of alcohol use in the first
semester of college. Thus, GIMME revealed that there is
more cross-talk among cognitive control regions during
alcohol-related decision making at a time when students
were experiencing increased alcohol exposure.

Mathematics andmodel fitting

GIMME implements unified structural equation models
(uSEMs; Gates et al., 2010; Kim, Zhu, Chang, Bentler,
& Ernst, 2007). uSEMs are a type of structural vector
autoregressive (VAR) model, which is a class of models
that contain both contemporaneous and lagged param-
eters. uSEMs differ from other structural VARs, how-
ever, in the way they are fitted to the data. Typically,
structural VARs are estimated by first fitting a standard
VAR to identify lagged relations between variables, and
then submitting the covariance matrix of the residuals
to a Cholesky decomposition to identify contemporane-
ous relations (Lütkepohl, 2005). But, results obtained in
this way are dependent upon the order in which the vari-
ables are input (Loehlin, 1996; Lütkepohl, 2005). uSEMs
do not do this “step-wise” model fitting, and instead,
identify both lagged and contemporaneous relations in
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the same step, producing results independent of variable
input order (Molenaar & Lo, 2016).

GIMME for a mean-centered input p-variate time
series η(t) containing measurements from time t = 1, 2,
…, T is defined as:

ηi(t ) = (
Ai + Ai

g) ηi(t )
+ (

�1,i + �1,i
g) ηi(t − 1) + ζi(t ) . (1)

A is the p× pmatrix of contemporaneous edges among
the p nodes; the diagonal is zero because nodes cannot
predict themselves at the same time point. Thismatrix can
be understood as a SEM within GIMME. �1 is the p × p
matrix of first order lagged edges among the p nodes; the
diagonal is estimated and contains autoregressive effects,
that is, a node’s prediction of itself at the next time point.
Because GIMME implements a first order model, esti-
mates are made only for the influence of one time point
prior. The �1 matrix can be understood as a standard
VAR of order 1 within GIMME. ζ is the p-variate vec-
tor of errors assumed to have means of zero with a diag-
onal covariance matrix and no sequential dependencies,
such that all temporal information is explained within A
and�1 (seeA Posteriori Testing of Assumptions). The sub-
script i denotes that parameters are uniquely estimated
for each individual, and the superscript g denotes patterns
that exist for the group (i.e., full sample); matrices with
no superscript g indicate individual-level patterns. All
parameters are estimated separately for each individual;
thus, Ai

g and �1,ig show the structure of the group-level
edges (e.g., a given path�mn

g �= 0 for all i), with the mag-
nitude of the edges varying across individuals (e.g., �mn
= .23 for i = 1), wherem and n denote different nodes.

GIMME is fit via data-driven forward selection. (The-
oretically, it can also be fit via backward selection or in a
confirmatory way, but this would require reprogramming
and testing to ensure valid and reliable results.) It is
fit using the block Toeplitz method (Molenaar, 1985).
Although the estimation is pseudomaximum likelihood
because the observations (i.e., input time series) con-
tain dependencies, it produces results similar to raw
maximum likelihood (Hamaker, Dolan, & Molenaar,
2005; Zhang, Hamaker, & Nesselroade, 2008). Fitting
proceeds according to the steps shown in Figure 2. First,
a null network model is fit for each individual, that is,
a model with no parameters (i.e., edges) in the A or �

matrices is fit to the data. Second, the group-level model
is identified. This is done via Lagrange Multiplier tests
(i.e., modification indices; Sörbom, 1989). These tests
indicate the extent to which a given parameter – if added
to the model – would improve model fit. If there is a
parameter that would significantly improve model fit for
a researcher-specified criterion for what constitutes the

Figure . Schematic showing the model fitting steps employed
within GIMME (Gates &Molenaar, ). Note that the “null”model
can be empty or have specified group-level contemporaneous
or lagged connections (e.g., the autoregressive effects). Lagrange
Multiplier tests (i.e., modification indices) are used to identify opti-
mal parameters (i.e., contemporaneous or lagged edges in the Ai,
Ai

g,�1,i, and�1,ig matrices of equation , respectively) to add to
themodel structure (i.e., network). Models are assessedwith alter-
native fit indices, such as the comparative fit index, non-normed
fit index, root mean squared residual, and standardized root mean
squared error. (Reproduced with permission from Elsevier from
Gates & Molenaar, .)

“majority” of the sample (usually 75%), then it is added to
the network, and the model is re-estimated. In this way,
GIMME begins by only adding effects that are replicated
across the sample (i.e., individuals). Prior work that is
critical of model searches suggests that the replication
of effects is an optimal method for arriving at valid
and reliable results, with appropriate caveats for sample
size or time series length and model misspecification
(MacCallum, Roznowski, & Necowitz, 1992). This
search-and-add procedure continues until there is no
longer an edge that would significantly improve model fit
for the criterion of the sample. If any edges became non-
significant for the majority (using the criterion selected)
through this iterative process, then they are pruned from
the group-level network. Third, individual-level mod-
els are identified. Separately for each individual in the
sample, the group-level model is fit, and then Lagrange
Multiplier tests are used to determine whether additional
parameters – if added to the model – would significantly
improve model fit. If so, they are added to the network,
and the model is re-estimated. This search-and-add
procedure continues until a model with excellent fit
is obtained, according to two out of four commonly
accepted fit indices (Brown, 2006): comparative fit index
(CFI) � .95; non-normed fit index (NNFI; also known as
the Tucker-Lewis index) � .95; root mean squared error
of approximation (RMSEA) � .05; standardized root
mean residual (SRMR) � .05. Due to this iterative pro-
cedure, models usually fit well, but this is not always the
case, especially for short time series or variables with little
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covariation. If any edges that are not in the group-level
model became non-significant for the individual through
this iterative process, they are pruned from the network;
within GIMME, results are corrected for the number
of individuals and the number of candidate paths being
searched. Fourth, a confirmatory model that includes all
group- and individual-level edges after trimming is fit.

Part II: Analyzing data with GIMME

There are several steps in the GIMME analysis pipeline.
Although the details of each step vary depending upon
study goals and the nature of the data being analyzed,
GIMME analyses typically include data acquisition, pre-
processing, program operation, testing model assump-
tions, and results interpretation. These steps are described
below, noting special considerations. A small, but novel,
daily diary data set from 10 women is analyzed step-by-
step to illustrate the GIMME workflow.

Data acquisition

GIMME creates sparse, directed networks from multi-
variate time series; these are sets of variables that have
been intensively repeatedly measured. Examples include
functional neuroimages (e.g., from fMRI or electroen-
cephalography, EEG), ecological momentary assessments
(e.g., daily diary reports or actigraphy), coded observa-
tions (e.g., videotaped interactions), or biomedical assess-
ments (e.g., heart rate or hormone sampling). Typically,
variables are assessed on a continuous interval or ratio
scale, and they can reflect a single measure (e.g., BOLD
signal from a voxel or ROI) or a composite (e.g., summary
score froma questionnaire).Most applications ofGIMME
have utilized between 4 and 10 variables, but the program
generally works well with between 3 and 20 variables. To
enter data in the program, researchers must create a data
matrix for each participant, in which the columns are
the variables (i.e., nodes) and the rows are the repeated
measurements. GIMME will create person-specific block
Toeplitz matrices. These matrices can be visualized as
submatrices (blocks), with each block along descend-
ing diagonals (Toeplitz) providing the contemporaneous
covariances, while the off-diagonal blocks provide lagged
covariances.

Although GIMME is robust, there are several things
researchers should consider with respect to variable selec-
tion, measurement intervals, and time series length to
optimize the analysis and interpretation of results. Con-
cerning variable selection, it is important to remember
that GIMME creates networks that show how parts of a
dynamic system covary. Thus, variables that have limited
variation should not be used. In fact, a variable currently

cannot be used if it does not contain sufficient variation
across time.

The length of the interval between intensive longitudi-
nal measurements can influence the networks derived by
GIMME. Although the length of the interval is sometimes
determined by data collection instruments (e.g., the time
to repetition in an fMRI study), it often is not. When it is
not, it is obviously most important to consider the time
course of the biological or psychological process being
investigated. Is it thought to unfold over seconds, hours,
or days? Data collected with short measurement intervals
(e.g., milliseconds in EEG) have high resolution. These
data could be downsampled during preprocessing (e.g.,
using lags detected with auto- or cross-correlation func-
tions) prior to GIMME (see Preprocessing). They could
also be used in GIMMEwith the knowledge that they will
increase the number and magnitude of lagged edges and
maybe even the temporal order of the model, that is, the
estimation of lagged edges in which the variability in one
node predicts the variability in another node two, three,
four, ormoremeasurements in the future (seeResults Vali-
dation and Interpretation; Beltz &Molenaar, 2015). More-
over, data collectedwith longmeasurement intervals (e.g.,
24 hours in daily diaries) are likely to increase the num-
ber and magnitude of contemporaneous edges since the
rate of measurement occurs at a longer time span than
the rate of the process being studied. When autoregres-
sive effects do not exist or are small, the contemporaneous
edges increase, the likelihood of havingmultiple solutions
that describe the data equally well (see Handling Multiple
Solutions; Beltz & Molenaar, 2016). In all cases, GIMME
assumes the length between observations is equidistant.

The length of the time series (i.e., the number of
repeated measurements) required to estimate a GIMME
model depends upon the number of nodes, features of
the data, and aspects of the network model being esti-
mated (e.g., with or without external input; see Model-
ing Exogenous Effects). Of course, longer time series are
always better. Most GIMME applications in the literature
have had time series that were at least 100 measurements
long, but analyses have been done with fewer measure-
ments, including the data example presented below. Time
series length can differ across individuals.

In the empirical data illustration, 10 women com-
pleted an online set of questionnaires and cognitive tests,
including a modified daily version of the NEO Person-
ality Inventory (Costa & McCrae, 1989), at the end of
each of 75 days. Participants were asked the extent to
which 60 statements described them that day. Responses
ranged from 1 (strongly disagree) to 5 (strongly agree).
Composite scores were created by averaging 12 items
reflecting each of the Big Five personality dimensions.
Complementing work on the individualized structure of
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personality (Molenaar & Campbell, 2009), the aim of this
analysis was to explore the interrelations among group-
and individual-level personality dimensions. Despite
great heterogeneity in the structure of personality, are
there commonalities in the temporal interconnectedness
among traditional dimensions? Thus, there were five
nodes; each showed within-person variation (standard
deviations had a mean of .34 and ranged from .09 to .61)
across the time series that consisted of 75 measurements
with a 24-hour measurement interval.

Preprocessing

Preprocessing should be implemented prior to GIMME
analyses. These procedures obviously depend upon the
type of time series data being studied and the preferences
of researchers. For example, standard preprocessing
should be applied to fMRI data before time series are
extracted from ROIs for each participant. Behavioral data
require special consideration of missing data, temporal
trends, and sampling frequency, too. Careful attention
should also be paid to the order in which preprocessing
steps are conducted; the optimal order may depend on
features of the data.

There is little consensus on the best way to handle
missing data in person-specific time series (see, e.g.,
Honaker & King, 2010). GIMME accommodates missing
data using full information maximum likelihood (FIML).
This approach utilizes all available information and
does not conduct listwise deletion, which removes all
measurements from a time point in which one or more
variables does not have an observed value. Although list-
wise deletion is standard practice in time series analyses,
it may affect network results and substantive inferences,
particularly concerning lagged edges when over 20% of
the measurements are missing (Rankin & Marsh, 1985).
For this reason GIMME utilizes FIML. Researchers sim-
ply must indicate missing observations in the input time
series; if long periods of time are missing, then one line of
missingness is sufficient as a placeholder for the section
of missing data. In this way, full rows of data are not
deleted, and issues regarding deletion of observations are
reduced if data are missing at random.

Researchers might instead choose to handle missing
data prior to GIMME analyses, especially if the data
require additional preprocessing (e.g., researchers may
want to impute raw data before detrending). One option is
to restructure the data to avoid missingness. For example,
observational data could be coded in 6-second intervals
instead of 2-second intervals to increase the possibility
that the behaviors of interest occur within the measure-
ment interval. This may have consequences, such as

decreasing the time series length or increasing variability
for nodes in which variability is limited. Another option is
to impute the missing data, with special consideration of
the dependencies in time series. Sliding window averages
and the individual VAR (iVAR) program are options.
Sliding windows replace missing values with the mean
of surrounding values, and iVAR imputes time series
data and works well when data are missing in the latter
half of the time series (Liu & Molenaar, 2014). Neither
option should introduce bias if the time series are weakly
stationary, that is, have variables with a constant mean
and covariance that only depends on the order of the lag.

GIMME analyses assume weak stationarity. GIMME
maps the dynamics in a system; it does not necessarily
assess gradual change over time as in traditional longitu-
dinal or growth curve analyses. For these reasons, trends
in variables (e.g., relatively slow changes in functional
form) should be handled prior to GIMME. For instance,
a linear trend could be removed by regressing the data
against time and then entering residuals into GIMME.

Researchers might also consider downsampling when
working with data of a high temporal resolution or when
lags greater than one are expected (as mentioned in
Data Acquisition). Doing this enables immediate use of
GIMME, which currently only models a lag of one, but
the pros and cons of downsampling versus explicitlymod-
eling higher order lags after GIMME analyses are still
unclear (see A Posteriori Testing of Assumptions); thus,
simulations are needed. Downsampling can only be done
if the data were collected at a time scale shorter than
the process of interest. If so, then standard time series
approaches can be used, such as detecting lags with the
(partial) auto- and cross-correlation functions, regress-
ing them out, and using residuals in subsequent analy-
ses (much like detrending). Measurements can also be
skipped or aggregated (e.g., when working with psy-
chophysiological data). Other approaches, such as basis
functions, might be meaningful for detecting cycles (e.g.,
weekly events in daily diaries).

Once preprocessing is completed, researchers must
save the data in the format necessary for GIMME. There
must be a separate file for each participant arranged with
columns as the nodes and rows as the time points or mea-
surement occasions; several different file formats (e.g.,
text, comma separated values) are compatible.

In the data illustration, time series from the 75-day
self-reports of 10 women were examined for missingness.
Missing data ranged from 0% to 16%. Local means were
imputed for missing days using sliding windows of width
5 (i.e., two measurements before and two measurements
after the missing data point). The time series were then
examined for trends, focusing on linear effects. At least
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one personality factor showed a linear trend for all partic-
ipants, according to univariate regression analyses with
α = .05. Thus, for all participants, time was regressed on
personality factor composite scores, and the standardized
residuals were saved for GIMME analyses.

Preprocessing results are depicted for three exemplar
participants in Figure 3. For each participant, the original
time series of all five personality factors are plotted; days
with imputed data are indicated by transparent gray bars,
and linear trends are indicated by thin lines. The stan-
dardized residual time series that were eventually used
in GIMME are also plotted for each participant. Partici-
pant A had nomissing data, but a negative linear trend for
agreeableness. Participant B had 12 daysmissing, with lin-
ear trends for neuroticism, extroversion, and agreeable-
ness. Participant C had 3 days missing, with linear trends
for neuroticism, openness, and conscientiousness. Time
series files for the standardized residualized personality
time series for all 10 women were created; for each par-
ticipant, there was a text file with 5 columns (personality
factors) and 75 rows (days).

Programoperation

GIMME is fully automated and can be used through a
graphic user interface (GUI) or command line. It was
initially developed in Matlab R© (Mathworks, 2015) with
a LISREL (Jöreskog & Sörbom, 1992) dependency, but
now is available and maintained in R (R Core Team,
2015). All code is freely accessible at https://cran.r-
project.org/web/packages/gimme (Lane et al., 2017) and
from the authors. The program is under continual devel-
opment, so GUI images and command line prompts are
not included here, but rather in detailed guides (see
Lane & Gates, 2017) and user manuals accompanying the
program.

After loading the program into their preferred plat-
form, researchers enter some basic information into the
GUI or command line. They enter paths to the folder con-
taining the individual time series files created during pro-
cessing and to the output folder where results files should
be written. They also specify some details about the data
and desired analysis features. These vary, but can include

Figure . Preprocessing results for three exemplar participants illustrating theGIMMEwork flow.On the left, composite scores fromeach of
the five personality factors are plotted by diary day. Transparent gray bars indicate days with missing data, imputed with the individual’s
local average, and thin lines indicate personality factors with significant linear trends (at p < .). On the right, standardized residuals
from the linear regression of time on personality factor plotted by day. These residuals remove the linear trends from the data, and were
subsequently entered into GIMME.

https://cran.r-project.org/web/packages/gimme
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the number of nodes, measurement interval, analysis type
(e.g., with or without an exogenous effect; see Modeling
Exogenous Effects), subgrouping option (see Identifying
Similar Patterns Among Subsets of Individuals), and equal-
ity criteria (see Handling Multiple Solutions).

GIMME provides the option to begin the analysis with
the autoregressive terms estimated. The autoregressive
terms are lagged edges between each variable and itself;
they reflect self-prediction. When this option is used, the
autoregressive parameters are added to the group-level
model (�1,i

g) before Lagrange Multiplier testing begins.
On the one hand, this seems logical. The autoregres-
sive terms statistically control for potential node auto-
correlations prior to examining cross-lags, with the goal
being to test the temporal relations between nodes from
a Granger causality perspective (Granger, 1969). For an
edge to satisfy conditions for Granger causality, it must
predict the target node above and beyond the extent to
which the node predicts itself over time. Procedures like
this are common in neuroimaging general linear models
(e.g, Friston et al., 2000;Woolrich, Ripley, Brady, & Smith,
2001) and will likely speed up network estimation, since
time series with short measurement intervals are likely
to have the autoregressive terms estimated in the data-
driven search anyway. On the other hand, autoregressive
terms may not be significant for all individuals, partic-
ularly when samples are heterogeneous or when mea-
surement intervals are long. In these cases, freeing the
terms a priori might artificially increase network homo-
geneity and might influence the order in which parame-
ters are freed in the data-driven search. For example, the
parameter with the largest modification index in the null
model may not be the first parameter to be freed in a
data-driven search with autoregressive terms, and this has
consequences for the structure and number of network
solutions that GIMME provides (see Handling Multiple
Solutions; Beltz &Molenaar, 2016). The conditions under
which the a priori estimation of autoregressive terms are
optimal or suboptimal still requires extensive simulation
studies.

The output provided by GIMME depends upon the
version being used, so researchers should refer to user
manuals for details. Briefly, a set of information is pro-
vided for the network estimated for each participant.
This includes fit indices and matrices or lists containing
estimates of the lagged and contemporaneous edges orga-
nized according to terms of the GIMME model in equa-
tion 1. Typically, the presence or absence of edges is of
interest as well as the weight of specific edges. Because
GIMMEcontains both contemporaneous and lagged con-
nections (in the p x p A matrix and the p x p �1 matrix,
respectively), the full β matrices containing the estimated
parameters are 2p x 2p. Within the matrices, the nodes in

the rows are explained by the nodes in the columns, both
of which are organized such that the nodes at time t – 1
are listed first (top of the rows and left in the columns)
followed by the nodes at time t. Because variation in the
nodes is explained at time t, all parameters in the top half
of thematrix (at time t– 1) are fixed at 0. The nodes at time
t are then explained by the nodes at time t – 1 (i.e., entries
in the lower left corner of the matrix) and by the nodes at
time t (i.e., entries in the lower right corner of thematrix).
The entries in the matrix could be depicted with a 0 or 1
indicating whether or not an edge was estimated in the
network, or they could be standardized β weights show-
ing the magnitude of an estimated edge; standard errors
and significance tests (i.e., t-tests) are provided for each β

weight.
Returning to the data illustration, an input folder of the

preprocessed time series and an empty output folder were
created prior to GIMME analysis. A Matlab R© version of
GIMME was used for the analysis; the GIMME GUI was
activated from the command line. In the GUI, the input
and output folder pathswere entered, alongwith the num-
ber of nodes (5) and measurement interval (24 hours).
A uSEM analysis was run because there was no exter-
nal input (e.g., task component or moderating variable;
see Modeling Exogenous Effects), and the autoregressive
terms were not estimated at the outset because the mea-
surement interval was relatively long, and temporal cor-
relations were not expected to be large. Standard group-
and individual-level significance criteria were used.

The resulting networks fit the data well for all partici-
pants, with average alternative fit indices of RMSEA= .04,
SRMR= .09, CFI= .97, andNNFI= .95. One group-level
edgewas identified byGIMME. It was a contemporaneous
connection from neuroticism to agreeableness that (when
significant) ranged in magnitude from .31 to .72 and was
always negative in direction, indicating an inverse rela-
tion between the two personality factors. The edge was
not statistically significant for two participants, but it still
exceeded the 75% criterion for inclusion in the model as
a group-level parameter. The number of individual-level
edges ranged from 3 to 12, depending upon the partici-
pant, and all were statistically significant.

Modified output matrices and network depictions of
the results are displayed for the three exemplar par-
ticipants in Figure 4. The personality factors in the
matrix rows are explained at time t by the personal-
ity factors in the columns. Parameters in the A matrix
denote β estimates of contemporaneous relations and
are shown as solid lines with weights in the networks.
Parameters in the � matrix denote β estimates of lagged
relations and are shown as dashed lines with weights
in the networks. The single group-level edge is bold
and boxed in the matrix and is shown as a thick
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Figure . GIMME behavioral network results for three exemplar participants illustrating the GIMME workflow; these are the same
participants whose time series are plotted in Figure . On the left are output matrices for each participant, modified for illus-
tration purposes. Beta weights show the direction and magnitude of estimated connections, ’s indicate connections that could
have been estimated but were not (e.g., because they did not significantly improve model fit), X’s indicate parameters that
were fixed at , and thus, could not have been estimated, and the boxed estimate indicates the single group-level connec-
tion. The matrices are read with the nodes in the rows being explained at time t by either lagged (t –  edges in the �

matrix) or contemporaneous (t edges in the A matrix) connections with the nodes in the columns. On the right are the net-
work depictions of the results. Contemporaneous connections are shown by directed solid arrows, lagged connections are shown
by directed dashed arrows, the single group-level connection is shown by a thick line, and the individual-level connections are
shown by thin lines. Beta weights are shown for all connections. N: neuroticism; E: extroversion; O: openness; A: agreeableness;
C: conscientiousness.

solid line with a β weight in the networks. The net-
works for participants A, B, and C fit the data well:
χ2(30) = 41.67, p = .08, RMSEA = .07, SRMR = .16,
CFI = .96, NNFI = .95; χ2(28) = 32.79, p = .24, RMSEA
= .05, SRMR = .08, CFI = .96, NNFI = .93; and χ2(28)
= 27.45, p = .49, RMSEA = .00, SRMR = .07, CFI = .99,
NNFI = .98, respectively. The group-level edge was sig-
nificant for these participants, who had four, six, and six
individual-level edges, respectively.

A Posteriori testing of assumptions

A posteriori model validation should be conducted for
each person-specific network estimated byGIMME (Beltz
& Molenaar, 2015; Box & Jenkins, 1970). In other words,
researchers should verify that the generated networks are
optimal representations of the data and satisfy model
assumptions; this is standard practice in VAR model-
ing (Box & Jenkins, 1970; Lütkepohl, 2005). In partic-
ular, after assessing the fit of each model, such that
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at least two of the following four fit indices suggest
excellent fit (Brown, 2006; Gates & Molenaar, 2012):
CFI � .95; NNFI � .95; RMSEA � .05; SRMR � .05,
researchers should verify the white noise assumption for
the standardized residuals output for each model (refer
to Mathematics and Model Fitting; for details, see Beltz
& Molenaar, 2015). If the residuals are white noise (i.e.,
have no auto- or cross-correlations), then the first order
lagged model implemented by GIMME was sufficient for
removing all temporal dependencies from the data. If the
residuals are not white noise, as is likely in data sets with
relatively short measurement intervals or strong sequen-
tial correlations (Beltz & Molenaar, 2015), then higher
order terms should be considered. Although GIMME can
mathematically be extended to higher orders, white noise
tests and data-driven searches of higher order uSEMs are
not currently implemented in the program because the
first order models have been sufficient for most previous
applications, many of which had relatively long measure-
ment intervals and strong contemporaneous correlations
(e.g., Beltz et al., 2013; Grant et al., 2015). In order to
maintain the homogeneity of GIMME’s first order group-
level structure, it is recommended that researchers add
higher order terms (when needed) at the individual-level.
Such a model with the mean centered at 0 is defined as:

ηi(t ) = (
Ai + Ag

i
)
ηi(t ) + (

�1,i + �1,
g
i
)
ηi(t − 1)

+
r∑

q=2

�q,iηi(t − q) + ζi(t ), (2)

where η, t, A, �1, ζ , i, and g are defined as in equation 1,
and �q is the p x pmatrices of individual lagged edges at
order q = 2, 3,…, r.

There are many ways to conduct white noise tests, and
there are some study-specific decisions required in the
process. Detailed procedures and LISREL sample scripts,
however, are available (see Appendix; Beltz & Molenaar,
2015). The general idea is to use the estimated model to
generate one-step-ahead prediction errors, and then to
examine whether there are distinguishable temporal cor-
relations in those errors when estimated across higher
orders. If there are no significant temporal correlations,
then the network output from GIMME is sufficient. If
there are temporal relations, then higher order termsmust
be added to the model for that individual. Researchers
can use Lagrange Multiplier tests to facilitate identifica-
tion of specific higher order parameters. After identifying
a higher ordermodel, researchers should conduct another
white noise test to ensure the residuals are now white
noise. If they are not, then an even higher order model
is necessary. If researchers wish to sidestep this issue, they
could consider regressing out higher orders prior to anal-
ysis and using residuals in GIMME (see Preprocessing).

The importance of the a posteriori validation proce-
durewas reported in the analysis of resting state fMRI data
from 32 college students (Beltz &Molenaar, 2015). BOLD
time series from four ROIs constituting the default mode
network were analyzed with GIMME (Biswal et al., 2010;
Van Dijk et al., 2010). A prominent group-level network
was identified, but a posteriori model validation revealed
that residuals were white noise for only 56% of the sam-
ple. For the remaining 44%, second order individual-level
edges had to be added to their networks in order for resid-
uals to be white noise. There were few patterns among the
second order parameters, and thus, there was no indica-
tion that a second order group-level edge was necessary.

Regarding the data illustration, network results were
subjected to a posteriori model validation. The estimated
parameters from each participant’s GIMMEnetworkwere
used to generate prediction errors at each time point:
ζ̂i = ηi(t ) − Âηi(t ) − �̂1ηi(t − 1). This resulted in a
five (factor) by 74 (time points minus 1 degree of free-
dom) matrix of residuals for each participant. Temporal
dependencies in the residual matrices were examined by
generating block Toeplitz matrices up to a lag order of
3 and testing the fit of models specifying that there are
no temporal relations among any of the variables. Model
fitting was conducted in LISREL, and a sample script is
provided in the Appendix. The models fit the data well
for all participants, with average alternative fit indices of
RMSEA = .00, SRMR = .10, CFI = .99, and NNFI = .99.
Thus, results suggest that the residuals are white noise,
and that a first order model was sufficient for capturing
all temporal information in the networks.

Results interpretation

The GIMME analysis pipeline produces a network for
each participant that contains (if they exist) group-
level connections and individual-level connections that
indicate the magnitude and direction of one node’s
contemporaneous or lagged relation to another node.
Meaningful person-specific information can be deter-
mined from these network features. For example, the
presence and magnitude of autoregressions indicate the
extent to which a node is self-predictive. In Figure 4,
participants B and C have positive autoregressive terms,
potentially suggesting that these factors are steady for
the two women (after accounting for the removed linear
trend, as all edges and estimates must be interpreted in
the context of preprocessing). Also, the presence of feed-
back and feedforward loops indicates a dynamic coupling
between sets of nodes. Participants A and C have such
loops related to neuroticism. For the former, neuroticism
is related to decreases in same-day agreeableness, which,
in turn, predicts decreases in next-day neuroticism,
while for the latter, same-day extroversion predicts lower
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neuroticism, which feeds back to reduce next-day extro-
version. The discussion of autoregression and feedback
temporal loops both concern the interpretation of lagged
connections in GIMME-produced networks. The inter-
pretive value of the lagged connections depends upon
the research question, nature of the data, length of the
measurement interval, and preprocessing steps, among
other considerations. For instance, many neuroimaging
researchers are primarily interested in contemporaneous,
or time-locked connections among brain regions (e.g.,
Hillary et al., 2011), and so, they model lagged relations
to ensure accurate estimation of contemporaneous rela-
tions, since simulations show that the failure to account
for temporal dependencies in network maps can lead to
spurious contemporaneous results (Gates et al., 2010).
In other data, however, the lagged connections may have
substantive meaning, as in the observational study of
children’s positive affect and vigor of activity described
above. Results revealedmore lagged edges among positive
affect in groups of girls than in groups of boys, consistent
with data on sex differences in co-rumination, which is a
temporal process (Beltz et al., 2013; Rose, 2002).

There are several other ways to extract and synthesize
information from GIMME-derived networks; this infor-
mation can then be used in comparisons of previously-
defined subgroups (e.g., determined by task performance,
diagnosis, or sex), or they can be linked to individ-
ual differences measures (e.g., temperament, substance
use, or language ability). Some examples follow. First,
the magnitude of group-level edges, which have contin-
uous distributions, could be indexed by their estimated β

weights (i.e., the parameter estimates in the Ai
g and �1,i

g

matrices). Results from the illustrative GIMME analysis
revealed one contemporaneous group-level connection
from neuroticism to agreeableness. For participants A, B,
and C, whose networks are shown in Figure 4, this con-
nection had a β weight of −.70, −.32, −.36, respectively.
These values could be extracted from all 10 participants
and related to other variables of interest, such as inter-
nalizing and externalizing behavior or performance in an
experiment.

It is not meaningful to examine the β weights of
individual-level edges because they are not normally dis-
tributed. Specifically, individual-level edges are 0 for some
participants (because they are not estimated) and statisti-
cally significant for others, with the possibility of positive
or negative effects for those who have the edge. For
example, participants A and C have a contemporaneous
connection from extroversion to neuroticism, but partic-
ipant B does not; participant B cannot simply be assigned
a value of 0 for this connection in subsequent analyses
because the β weight was not estimated, and it is unlikely
that it would be exactly 0 if it were. Should researchers
wish to test a specific effect by using the estimated weights

as a continuous variable, they could specify that the edge
be estimated at the group-level null model when initial-
izing the analysis (seeMathematics and Model Fitting).

The second type of information that can be used
in subsequent analyses is the presence or absence of
individual-level edges. In these cases, researchers can
count the number of specific types of edges that are
present (e.g., edges that are interhemispheric in fMRI
research) or generate hypotheses related to the presence
or absence of particular edges. For instance, perhaps a
clinical researcher would like to investigate if the pres-
ence of a relation between two symptom variables relates
to treatment outcomes. Additionally, the total number
of edges present in a network could also be used as an
index of network sparsity or density. Of the participants
in Figure 4, participant A has the sparsest network, with
5 edges, and participants B and C have equally dense
networks with 7 edges. High density can be an indica-
tion of maladaptive response cycles in a clinical sample,
or in neuroimaging research, of decreased optimization
in brain processes that may lead to poor performance
(Nichols et al., 2014).

Third, graph theoretical metrics could be calculated,
and are especially insightful and reliable for networkswith
many nodes (i.e., those at the upper limit of what is well-
suited for GIMME). Hubs could be identified by exam-
ining the in- degree and strength (number and weight of
edges predicting a node), out- degree and strength (num-
ber and weight of edges a node predicts), and importance
of a node in the overall network reflected in its inter-
connectedness to other nodes (Rubinov & Sporns, 2010;
Sporns, 2011). For instance, in Figure 4, extroversion has
the greatest out-degree for participant A, and it is a hub
for participant B. Neuroticism is the hub for participants
A and C. These are just a few ways in which GIMME
results can be reduced into measures that describe the
nature of nodes or full networks. Though written with
fMRI researchers in mind, Rubinov and Sporns (2010)
explain some additional options for quantifying network
attributes. Regardless of the metrics used, researchers are
urged to think critically about the alignment of their
hypotheses with GIMME-derived network features. Are
they more interested in the weight of an edge that might
be a target for treatment, the node that seems to drive the
system, or a network-level attribute? These fundamental
questions should guide analyses.

Part III: Extensions of GIMME

There are additional features of GIMME targeted to
certain research questions and types of data. They
are reviewed briefly below, and interested researchers
are directed to the cited primary sources for more
information.
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Modeling exogenous effects

GIMME can be applied to data that are influenced by
exogenous input. “Exogenous” here refers to a vari-
able that cannot be influenced by other variables in
the network; examples include the weather or a set of
stimuli presented in an fMRI study to examine the cor-
respondence between brain activity and time-locked
psychological stimuli. Clearly, the weather and fMRI
stimuli cannot be predicted by a person’s mood or brain
activity; the directionality can only occur from the exoge-
nous variable to the variables in the network. The ability
to model exogenous influences on individuals’ networks
is a unique feature of GIMME, as most network mapping
approaches for neuroimaging data do not explicitlymodel
task effects (dynamic causal modeling is one exception,
see Friston et al., 2003). GIMME does this by implement-
ing an extended uSEM (euSEM; Gates, Molenaar, Hillary,
& Slobounov, 2011). When GIMME is used to estimate
euSEMs (instead of uSEMs), not only does it identify
group- and individual-level contemporaneous and lagged
edges among nodes, but it also identifies group- and
individual-level contemporaneous and lagged direct
effects of an exogenous influence on a node. It can also
model the modulating effects, or how the magnitudes of
node connections change depending upon the exogenous
input.

The option to conduct euSEMs was originally devel-
oped and maintained in the Matlab R© version of GIMME,
but is now also available in the R version. To conduct an
euSEM, researchersmust provide the programwith a vec-
tor (or matrix) of exogenous inputs (e.g., onset times and
durations of stimuli presentations). This is similar to task
regressors organized by volumes or seconds used in gen-
eral linear models of fMRI data. For other types of data,
researchers must be certain that the input has the same
measurement schedule as the nodes (e.g., time series of
the same length) and that it contains sufficient variabil-
ity (e.g., not a dichotomous variable). Up to two inputs
can be modeled in GIMME, and they can differ across
individuals. For an example, see Hillary, Medaglia, Gates,
Molenaar, and Good (2014).

Identifying similar patterns among subsets of
individuals

Sometimes it can be difficult to tell from individual-level
network results what patterns of effects might relate to
specific constructs of interest. For instance, while it is
possible to test if a specific edge exists for individuals, it is
less straightforward to test if combinations or patterns of
edges might exist for subsets of individuals in a sample.

Further complicating the issue is that oftentimes there
are no a priori subgroups, or clusters of individuals that
researchers believe to be similar, to help guide the search.
This may occur in studies of diagnostic categories where
varied biological markers give rise to similar behaviors or
symptoms (e.g., equifinality), or anywhere there is hetero-
geneity within a sample that may, in fact, be systematic.
Alternatively, there could be meaningful subsets of indi-
viduals with different processes that do help differentiate,
for instance, among diagnostic categories. Subgroup-
ing within GIMME can help elucidate situations where
researchers wish to identify subsets of individuals who
have some similarities in their dynamic processes.

The option of subgrouping individuals based on the
temporal models that describe their neural, psycholog-
ical, or social processes was originally developed in the
R version of GIMME. This algorithm, called “subgroup-
ing GIMME” (or S-GIMME; Gates et al., 2017), clusters
individuals into subgroups using information available
after the group-level search; thus, individuals are clustered
based solely on their network patterns. Previous work
using this algorithm differentiated clinically depressed
individuals from controls based on brain connectivity
during an emotion task and also differentiated individu-
als within the same diagnostic category (Price et al., 2017).
Alternatively, researchers can provide a priori subgroups
(e.g., determined by task performance, diagnosis, or sex).

Regardless of whether subgroups are data-driven
or a priori, GIMME first arrives at group-level edges
in the typical way (see Mathematics and Model Fit-
ting). Next, subgroup-level edges are identified simi-
lar to the way group-level edges are identified. Finally,
individual-level edges are obtained by using group- and
subgroup-level edges as a prior. The final solutions pro-
vide group-, subgroup-, and individual-level edges, all
of which are estimated at the individual-level. The out-
put also indicates the subgroup in which each individual
was placed. The “subgroups” that are obtained are best
thought of as subsets of individuals that had the most in
common. Of course, individuals in one subgroup might
have some things in common with individuals in other
subgroups in terms of their dynamic processes. Nonethe-
less, S-GIMME aims to find similarities in patterns of
effects that might not exist for all individuals.

Handlingmultiple solutions

After reviewing the results of GIMME analyses (e.g., as
depicted in Figures 1 and 4), researchers might wonder
about the robustness of the findings, particularly the
directionality of the edges. For example, reversing the
direction of a contemporaneous edge in a network may
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not significantly affect model fit or the temporal depen-
dencies in the residuals, even though it drastically alters
a researcher’s substantive interpretation.

This issue has been addressed in the context of cross-
sectional path models, of which SEMs and the A matrix
in GIMME are examples. In these models, it is estab-
lished that multiple equivalent or plausible alternative
solutions – perhaps an infinite number of them – are pos-
sible (MacCallum, Wegener, Uchino, & Fabrigar, 1993;
Markus, 2002). This is most relevant to GIMME when
contemporaneous edges in the A matrix are the first to
be added to a network in the data-driven search (Beltz &
Molenaar, 2016). In these instances, the contemporane-
ous edges have equal modification indices (according to
Lagrange Multiplier tests); for instance, model improve-
ment for the estimation of the connection from node m
to node n is the same as the improvement for the estima-
tion of noden to nodem. Researchers can explicitlymodel
and compare multiple solutions arising from equal mod-
ification indices such as this using GIMME for multiple
solutions (GIMME-MS; Beltz & Molenaar, 2016).

A beta version of GIMME-MS is available from
the authors. GIMME-MS maintains many features of
GIMME, such as the estimation of euSEMs (seeModeling
Exogenous Effects), but also generates multiple solutions
when they are present. Researchers activate this feature
by indicating the equality criteria, that is, whether modi-
fication indices must be equal to 3, 4, or 5 decimal places
in order to trigger the creation of multiple solution paths.
For an example analysis and a description of ways to select
a solution ifmultiple were estimated, see Beltz et al. (2016)
and Beltz and Molenaar (2016), respectively.

GIMME limitations and considerations

There are some limitations inherent in the GIMME anal-
ysis pipeline, many of which are shared with data-driven
approaches in general. The primary concern surrounds
the possibility of overfitting the data. Overfitting is when
the model becomes more complex than necessary, often
by attempting to explain variance in the variables by
modeling noise. When this occurs, the model may have
more parameters than needed to model the data. While
this is certainly a possibility with GIMME, attempts have
been made to limit this. For instance, the search pro-
cedure stops as soon as the model is found to appro-
priately explain a reasonable amount of variance in the
data, according to alternative fit indices. This contrasts
an alternative approach where all paths are added if they
are significant. By using a stopping mechanism such as fit
indices, more parsimonious models are obtained. Other
reliable techniques for conducting data-driven models,
such as Independent Multiple-Sample Greedy Equivalent

Search (IMaGES; Ramsey et al., 2011) also utilize a stop-
ping mechanism based on fit rather than adding all paths
that reach significance in their estimates.

This preference for parsimony decreases the likeli-
hood of overfitting but does not remove it. As with any
approach, the model will only be as reliable as the data,
and it is a common issue in neural, psychological, and
social sciences for data to contain noise and measure-
ment error. GIMME is currently unable to directly model
the noise in variables. Remedies do exist. Since GIMME
estimates models from within an SEM framework, latent
variables can be generated (Bollen, 1989). Latent vari-
ables arrive at a signal for an unobserved construct using
observed variables as indicators. In this way, measure-
ment errors can directly be modeled and would not be
included in the search for relations among latent vari-
ables. Epskamp, Rhemtulla, and Borsboom (2017) have
implemented this approach for analysis on individual
data sets. Extension to the multiple modeling method
within GIMME is rather straightforward, and this work is
underway.

A related issue is that GIMME uses a feed-forward
approach for model building. This may cause problems
if the final models are sensitive to the starting point early
on in the data-driven search; hence, an incorrect path or
direction added early in the search will change the search
space and possibly perpetuate errors. To circumvent this,
the option for multiple solutions has been proposed (see
Handling Multiple Solutions; Beltz & Molenaar, 2016).
Another solution would be to utilize a feature selection
approach that simultaneously considers all possible paths.

A few other limitations exist that will cause issues
for specific types of data. For one, GIMME assumes the
relations among variables are constant across time. This
may be an untenable criterion for data in which change
across time (e.g., development) occurs. To address this,
trends can be removed from the data prior to analyses
(as in the data illustration), or the time-varying nature
of the data could be explicitly modeled (e.g., by divid-
ing the times series into windows). These solutions may
not work for all data sets, though. Two, in the absence
of any group-level paths, the directionality of the paths
may not be reliably recovered. As noted above, GIMME
improves upon the individual-level search approach by
utilizing shared information obtained by first identify-
ing effects that are replicated across individuals. With-
out any shared paths, the final models may be even fur-
ther from the “true” model (MacCallum et al., 1992).
One fix would be to include autoregressive effects for all
individuals, as most time series data can be expected to
have serial dependencies. This has been found to improve
model recovery in some instances. Another option would
be to allow for multiple solutions. From this, researchers
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can look for common themes and converging evidence
from which to draw inferences (Beltz & Molenaar, 2016).
Finally, GIMME does not model the means (i.e., level) of
the variables. While not of interest for network model-
ing or looking at relations among variables, it might be
of interest for some research questions.

Conclusions

GIMME is an accurate, data-driven, and automated
approach for the analysis of time series data, includ-
ing task-based or resting state neuroimaging data, daily
diaries, coded observations, and biomedical assessments.
It creates person-specific networks that explain covari-
ation in time series via directed edges between nodes
(e.g., ROIs or variables). The edges can be contempora-
neous (explaining covariation at the current time point)
or lagged (explaining covariation at future time points),
their direction can be evaluated inmultiple solutions, and
they can apply to the full sample, a subgroup of the sam-
ple, or just to an individual.

This tutorial provided researchers with a step-by-step
guide to conducting network analyses with GIMME. It
included information about acquiring time series data
and preparing them for analysis, running the program,
reviewing output, and validating and interpreting results.
Researchers are hopefully now prepared to contribute to
the ever-growing literature on the application of GIMME
to research questions concerning the dynamics of com-
plex brain, behavioral, and psychological systems.
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Appendix

White Noise Test
da no = 74 ni = 20 ma = km
cm sy fi = cov_res.txt
mo ny = 20 ne = 20 ly = id te = ze ps = sy,fi

fr ps(1,1)
fr ps(2,1) ps(2,2)
fr ps(3,1) ps(3,2) ps(3,3)
fr ps(4,1) ps(4,2) ps(4,3) ps(4,4)
fr ps(5,1) ps(5,2) ps(5,3) ps(5,4) ps(5,5)

eq ps(1,1) ps(6,6) ps(11,11) ps(16,16)
eq ps(2,1) ps(7,6) ps(12,11) ps(17,16)
eq ps(2,2) ps(7,7) ps(12,12) ps(17,17)
eq ps(3,1) ps(8,6) ps(13,11) ps(18,16)
eq ps(3,2) ps(8,7) ps(13,12) ps(18,17)
eq ps(3,3) ps(8,8) ps(13,13) ps(18,18)
eq ps(4,1) ps(9,6) ps(14,11) ps(19,16)
eq ps(4,2) ps(9,7) ps(14,12) ps(19,17)
eq ps(4,3) ps(9,8) ps(14,13) ps(19,18)
eq ps(4,4) ps(9,9) ps(14,14) ps(19,19)
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eq ps(5,5) ps(10,10) ps(15,15) ps(20,20)
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