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ABSTRACT

Researchers who collect multivariate time-series data across individuals must decide whether to
model the dynamic processes at the individual level or at the group level. A recent innovation, group
iterative multiple model estimation (GIMME), offers one solution to this dichotomy by identifying
group-level time-series models in a data-driven manner while also reliably recovering individual-level
patterns of dynamic effects. GIMME is unique in that it does not assume homogeneity in processes
across individuals in terms of the patterns or weights of temporal effects. However, it can be difficult
to make inferences from the nuances in varied individual-level patterns. The present article introduces
an algorithm that arrives at subgroups of individuals that have similar dynamic models. Importantly,
the researcher does not need to decide the number of subgroups. The final models contain reliable
group-, subgroup-, and individual-level patterns that enable generalizable inferences, subgroups of
individuals with shared model features, and individual-level patterns and estimates. We show that
integrating community detection into the GIMME algorithm improves upon current standards in two
important ways: (1) providing reliable classification and (2) increasing the reliability in the recovery
of individual-level effects. We demonstrate this method on functional MRI from a sample of former
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American football players.

Introduction

Researchers across varied domains of psychology widely
acknowledge that individuals are heterogeneous in
terms of their dynamic processes (e.g., Molenaar, 2004;
Molenaar & Nesselroade, 2012). Functional MRI (fMRI)
literature in particular highlights heterogeneity in brain
processes as a major analytic hurdle that has yet to be
reconciled (Ramsey et al., 2010; Seigher & Price, 2016;
Smith, 2012). Heterogeneity in brain processes surfaces
even within specific diagnostic categories, such as major
depressive (e.g., Price et al., 2016), autism spectrum
(e.g., Volkmar, Lord, Bailey, Schultz, & Klin, 2004), and
attention-deficit (e.g., Fair et al., 2012; Gates, Molenaar,
Iyer, Nigg, & Fair, 2014) disorders. Normative samples
have also evidenced heterogeneity in fMRI research (e.g.,
Beltz, Beekman, Molenaar, & Buss, 2013; Finn et al.,
2015; Laumann et al., 2015; Nichols, Gates, Molenaar, &
Wilson, 2013). Analytically, ignoring heterogeneity can
give rise to models that fail to explain any one individual
in the sample (Molenaar, 2004), which severely hampers
the utility of results for any research paradigm. Taken
together, emerging research highlights the necessity
of individual-level modeling with a specific need for
approaches that can reliably model directed (i.e., not

correlational) relations among brain regions. At present,
the most promising class of approaches for arriving at
directed temporal relations among brain regions of inter-
est are Bayes net techniques that utilize some information
from the sample (Mumford & Ramsey, 2014; Ramsey,
Hanson, & Glymour, 2011; Ramsey, Sanchez-Romero,
& Glymour, 2014), including the group iterative mul-
tiple model estimation (GIMME) algorithm (Gates &
Molenaar, 2012). The present article improves upon the
GIMME approach by clustering individuals into rela-
tively homogeneous subsets based entirely on features
of their temporal models. Most importantly, we show
that this step further improves the already exceptional
rate of reliable model building with GIMME. The final
results enable generalizable inferences in addition to the
identification of subgroups of individuals with shared
model features and person-specific paths and parameter
estimates.

The original GIMME has been shown to obtain highly
reliable directed temporal patterns of effects at the indi-
vidual level at rates superior to many methods (Gates &
Molenaar, 2012; Mumford & Ramsey, 2014; see Smith
et al., 2011). It is generally accepted that for any time-
series analysis, model misspecification may occur when

CONTACT Kathleen M. Gates @ gateskm@email.unc.edu @ University of North Carolina, Psychology, 344-A Davie Hall, Chapel Hill, NC 27599-3270.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hmbr.

@ Supplemental data for this article can be accessed on the publisher’s website.

© 2017 Taylor & Francis Group, LLC


http://dx.doi.org/10.1080/00273171.2016.1256187
mailto:gateskm@email.unc.edu
http://www.tandfonline.com/hmbr
http://dx.doi.org/10.1080/00273171.2016.1256187

130 K. M. GATES ET AL.

researchers attempt to arrive at one dynamic model to
describe all participants by concatenating individuals
(Gonzales & Ferrer, 2014; Molenaar, 2004, 2007). When
the analysis erroneously assumes homogeneity across
individuals in this manner, the group-level model may fail
to describe any of the individuals comprising the sam-
ple (Molenaar & Campbell, 2009). GIMME circumvents
this issue by detecting signal from noise across individuals
and conducting analysis for each individual separately to
arrive at a group-level model. In this way, GIMME arrives
at group-level paths that truly are valid for the major-
ity of individuals without concatenating individuals or
otherwise assuming homogeneity in their dynamic pro-
cesses. This group-level pattern of effects is then used as
a prior for building the individual-level models. Starting
with the shared information obtained by looking across
the sample (i.e., the group-level model) has been shown to
greatly improve recovery of individual-level paths (Gates
& Molenaar, 2012). It follows that using shared informa-
tion within subgroups of individuals who have similar
temporal patterns can further increase the reliability of
individual-level results. The present article describes an
extension to the GIMME algorithm that clusters individ-
uals during model building by using information available
after the group-level search and before the individual-
level searches.

Using parameters obtained from time series models
represents one common approach in the clustering of
time-series data of any type (Liao, 2005). Functional MRI
researchers currently cluster individuals on the basis of
parameters from final time-series models to arrive at
relatively homogeneous subsets of individuals in terms
of their brain processes (e.g., Gates et al,, 2014; Yang
et al., 2014). These inquiries offered support for previ-
ously argued notions that varied biological markers can
give rise to the same behaviors and symptoms (Gottesman
& Gould, 2003). Thus, the current standard of placing
individuals with the same diagnostic category into sub-
groups according to the assumption of within-category
homogeneity may be ill advised. These lines of questions
that seek to uncover subsets of individuals with similar
dynamic processes further motivate the aim of arriving
at reliable subgroups within GIMME. Directly following
from the features scientists typically use to examine differ-
ences between a priori subgroups (e.g., Yang, Gates, Mole-
naar, & Li, 2015), we seek to organize individuals accord-
ing to the presence and the sign (i.e., negative or positive)
of relations estimated from time-series analysis. That is,
individual-level nuances in the pattern of effects (as indi-
cated with significance testing) as well as the sign of the
effect will be utilized. We will investigate three candidate
approaches for feature selection, which as explained in

the following, utilize parameter estimates obtained dur-
ing different stages of the model-building process. Finally,
we apply a reliable clustering algorithm called Walktrap
(Pons & Latapy, 2006) to classify individuals according to
these features.

One might argue that individuals would be best
described along a multidimensional continuum rather
than in discrete classes. However, clustering individu-
als on the basis of time-series parameters aids in arriv-
ing at parsimonious models (Ravishanker, Hosking, &
Mukhopadhyay, 2010) and thus might be easier to inter-
pret and immediately translate into practice. For example,
Yang and colleagues (2014) clustered individuals accord-
ing to patterns of brain connectivity and found subgroups
of individuals diagnosed with early-onset schizophrenia.
A specific pattern of effects that emerged in one subgroup
related to negative symptoms. In this way, identifying dis-
crete subgroups of individuals with similar temporal pat-
terns may assist in a better understanding of the underly-
ing biological markers relating to specific sets of symp-
toms or behaviors. Data-driven classification based on
dynamic processes will thus help guide hypothesis forma-
tion, as well as the development of intervention, diagnos-
tic, and treatment protocols, by revealing underlying pat-
terns of effects for clusters of individuals that would not
be revealed by using predefined subgroups (e.g., diagnos-
tic category).

We present here a new approach that (a) arrives at sub-
groups of individuals (should they exist) entirely on the
basis of their dynamic processes and (b) obtains reliable
group-, subgroup-, and individual-level dynamic process
patterns even in the presence of heterogeneity. All esti-
mates are obtained separately for individuals with no
assumptions regarding their distributions. The algorithm
presented here, subgrouping within group iterative multi-
ple model estimation (referred to as “S-GIMME”), works
from within an SEM framework much like the existing
GIMME algorithm (Gates & Molenaar, 2012). The present
article is organized as follows. First, we provide informa-
tion on an example of fMRI data obtained from a sample
known to be heterogeneous in their functional neural pro-
cesses: former collegiate American football and National
Football League (NFL) athletes. This example will be used
to illustrate aspects of the algorithm. Second, we offer a
brief introduction of the original GIMME algorithm, fol-
lowed by a technical description of the development of S-
GIMME that enables classification of individuals accord-
ing to temporal patterns. Third, Monte Carlo simulations
are presented to evaluate S-GIMME and to examine con-
ditions leading to optimal and suboptimal performance.
Finally, we discuss the implications, current drawbacks,
and future directions.



Empirical data example

American football players are at high risk for head
injuries, including concussion. The biomechanics of
concussion are known to vary across individuals
(Guskiewicz & Mihalik, 2011). For this reason, indi-
viduals who have played American football are highly
likely to be heterogeneous in their functional neural
patterns and thus provide an ideal example with which to
demonstrate empirical results obtained with S-GIMME.
The data come from a larger study investigating the
extent to which the degree of exposure to risk of con-
cussion (i.e., years playing football) related to changes in
brain processing. As such, participants in this study were
recruited according to the level of exposure to risk of
concussion from playing. The final sample contained 31
former professional NFL players who played a minimum
of two seasons of professional football (high-exposure
sample) and 32 former college football players from Divi-
sion 1 schools on east-coast United States (low exposure).
The football players were matched on demographics,
number of concussions sustained, and position played
(age in years: M = 58.46, SD = 0.47; all male). Data used
in the present project were gathered while participants
engaged in a 1-back task, a task often used to assess
working memory (Kirchner, 1958). The total number of
timepoints for each individuals was 158. Eleven brain
regions of interest from the frontal parietal network were
used in the present analyses. The frontal parietal network
is implicated in adaptive task-level control (Dosenbach,
Fair, Cohen, Schlaggar, & Petersen, 2008; Silk et al.,
2005). Individuals in other samples experiencing head
trauma have been found to be heterogeneous in terms
of their brain processes across these regions as assessed
with fMRI (Hillary et al., 2011). Full details regarding
data acquisition and task can be found in the Supple-
mental Material. These data will be used throughout the
explanation of the S-GIMME algorithm as an illustrative
example.

Original GIMME

The original GIMME algorithm (Gates & Molenaar,
2012) provides the basis of the current extension. GIMME
obtains reliable group- and individual-level patterns of
temporal effects with all effects being estimated uniquely
for each individual. GIMME works from within a unified
SEM (uSEM; Gates, Molenaar, Hillary, Ram, & Rovine
2010; Kim, Zhu, Chang, Bentler, & Ernst, 2007) frame-
work. Broadly, uSEM is a technique for conducting
time-series analysis with SEM. It has been used across
various fields in the social sciences, including neuroimag-
ing (e.g., Karunanayaka et al., 2014; Nichols et al., 2013),
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economics (e.g., Dungey & Pagan, 2000), and social
behaviors (e.g., Beltz, Beekman, Molenaar, & Buss, 2013).
Two types of effects of interest are simultaneously esti-
mated. First, uSEMs can contain effects representing
the influence that the available variables have on each
given variable at the next timepoint, much like traditional
multivariate or vector autoregression (VAR). Second,
uSEMs arrive at the directed (i.e., not correlational)
contemporaneous effects of how one variable statistically
predicts another variable at the same time, controlling for
any lagged or contemporaneous effects.

Three immediate benefits arise from simultaneously
arriving at the lagged and contemporaneous effects (Gates
etal,, 2010). First, including lagged effects prevents spuri-
ous effects that often occur if only contemporaneous rela-
tions are modeled in the presence of unmodeled lagged
relations in the generative model. Second, including the
autoregressive (AR) effects enables inference into which
of two given variables statistically predicts the other from
within a Granger causality framework. In this framework,
a variable 7, is said to Granger-cause a different vari-
able n, if n; explains variance in 1, beyond the vari-
ance explained in 1, by its AR term. Granger causality
can be tested in this way for lagged or contemporane-
ous (or “instantaneous”) relations (Granger, 1969). Third,
including the contemporaneous effects in the model pre-
vents these effects from erroneously being captured as
correlations among errors or as inflated lagged effects.
As described by Granger (1969), when data are under-
sampled such that observations are collected at a rate
slower than the construct under examination, the rela-
tions among variables may best be modeled contempo-
raneously. In fMRI, data are collected on the order of
seconds whereas the neural activity they seek to capture
occurs on the order of milliseconds. As such, contempora-
neous relations generally contain the information regard-
ing underlying neural processes (Smith et al., 2011). It
is important to note that nothing is lost when allowing
for the possibility of both lagged and contemporaneous
effects when using a reliable search procedure.

The uSEM is formally defined as follows:

Ny =An + ®ni_1 + &, (1

where A is the p x p matrix of contemporaneous effects
for p variables and contains a zero diagonal; ® is the
matrix of lagged effects with AR effects along the diag-
onal; 77 is the manifest time series (either for a group or
individual in this general formula); and ¢ is the residual
for each point in time ¢. Please note that while observed
variables are used throughout the present implementa-
tion, extension to latent variables is feasible. The subscript
t-1indicates the values at the prior timepoint. Henceforth,
“effects” will be used as a general term to indicate these
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A. Detailed Depiction

Y3r—1

B. Succinct Depiction

Contemp. Effects (4)

Figure 1. Depiction of unified SEM model. (A) Detailed and (B) succinct depictions of identical uSEM models. In (A), € indicates measure-
ment errors, A the factor loadings, 1 the variables to be modeled in the structural equation, and ¢ the regression errors. Values next to the
parameters ¢ and A indicate the weights for the respective lagged and contemporaneous effects included in the model. In (B), the path
width reflects weights, the measurement model is omitted, “Var” replaces 7 to reflect “Variable,"and lagged effects are dashed lines rather

than including the lagged variables explicitly.

lagged and contemporaneous effects (also termed “paths,
“edges,” or “connections” in other literature). Figure 1
presents a graphical depiction of uSEMs using a tradi-
tional SEM path diagram and introduces a conceptually
equivalent yet simpler depiction that will be used for the
remainder of the article. Note that the total number of
variables is twice the number of original variables, rep-
resenting the p original variables and the p variables at a
lag of one.

As written in Equation (1), the uSEM can be applied
at the individuals’ level or at the group level by verti-
cally concatenating individuals person-centered multi-
variate time series. Since it is highly implausible to expect
individuals to have identical models, concatenating across
individuals to arrive at one group model is not a recom-
mended approach (Molenaar, 2004). For this reason, the
GIMME algorithm estimates all models at the individual
level throughout a model search procedure that culmi-
nates in individual-level models and estimates. However,
an important first step utilizes information for all individ-
uals in the sample to find effects that replicate across indi-
viduals. Prior work has demonstrated that using effects
that exist consistently across individuals helps to detect
signal from noise and that using group-level effects as
a prior greatly improves the recovery of the directional-
ity of effects at the individual level. As described briefly
in the following, GIMME arrives at a group-level struc-
ture, or pattern of effects, that describes the majority
of individuals in the sample; this process is done in a
manner that is not subject to outliers as seen in other

aggregating approaches. Full details can be found in Gates
and Molenaar (2012); we also provide additional informa-
tion regarding estimation of uSEMs in the Supplemental
Material of the present article.

The group-level search is guided by the use of mod-
ification indices (MlIs), related to Lagrange multipliers
(Engle, 1984), which are scores that indicate the extent to
which the addition of a potential effect will improve the
overall model fit (S6rbom, 1989). As MIs are asymptot-
ically chi-square distributed, significance can be directly
tested for each MI. It has previously been suggested that
models built using MIs need to be replicated to demon-
strate consistency of effects (MacCallum, 1986). As such,
GIMME only includes effects at the group level that
exist across individuals. The GIMME algorithm begins
by counting, for each effect, the number of individuals
whose models would significantly improve should that
effect be freely estimated. This results in a count matrix,
and the element from the constrained set that has the
highest count is selected. Due to the testing of MIs across
all individuals, the criterion for significance uses a strict
Bonferroni correction of .05/N, where N = the number
of individuals. This starkly contrasts methods that iden-
tify effects to include in the group model by looking at
the average of effects, as the GIMME approach cannot be
influenced by outlier cases and is impervious to sign dif-
ferences (such as large absolute values for all individuals
that are negative for some individuals and positive for oth-
ers). In fact, information regarding the sign of the weight
is not used in the group-level search—here, only the



absolute magnitude is considered (although the sign is
used in the following for subgrouping). Should there be
a tie in the count of significant MIs then the algorithm
selects the element with the highest sum of MIs taken
across all individuals.

This brings us to another important point that dif-
ferentiates model searches conducted from within the
uSEM framework from other search procedures that have
been previously conducted using MIs. The MIs for candi-
date paths in the A matrix will be equivalent across the
diagonal if no other effects have been estimated. As an
example, it is well understood that the simple regression
n1 = Bn, 4+ ¢ will have the same standardized B weight
as 1, = Bny + ¢. This equivalence will be seen in the MI
matrix with the MIs relating to the prediction of 7; from
1, having the same value as the MI for the matrix ele-
ment corresponding to 7, being predicted by ), if there
are no other predictors of either variable. However, when
the AR effects are freed for estimation in the ® matrix
prior to conducting the model search, the equivalences
across the diagonal of the A matrix disappear and thus do
not encumber the model search procedure. Controlling
for these AR effects, the estimate of any element in the A
matrix will now be unique. An additional benefit is that
Granger causality testing, described in the preceding, can
immediately proceed by including the AR effects. By start-
ing the model search with the AR effects freed for estima-
tion (which is often appropriate in many lines of research),
one can capitalize on the fact that MIs take into account
the relations that already explain variance in a given vari-
able when arriving at the expected change in the model
fit should a given effect be freed (see Gates et al., 2010 for
further details).

The algorithm iteratively continues until there are no
effects that would significantly improve the majority of
individuals’ models. What constitutes the majority in a
meaningful sense can vary from researcher to researcher.
While 51% would technically be the majority, here we use
a stricter cutoff of 75%. This stricter cutoft serves two
purposes. First, prior work has shown that this percent-
age provides an optimal trade-off for arriving at group-
level models that truly describe the majority of individ-
uals in the presence of noise (Gates & Molenaar, 2012;
Smith et al., 2011), and this percentage is a common
threshold used when attempting to identify an effect that
exists for the “majority” from individual-level results in
fMRI studies (e.g., van den Heuvel & Sporns, 2011). Sec-
ond, for the present goal of classification, having a strict
denotation of what constitutes the majority will provide a
greater number of candidate individual-level effects upon
which to cluster individuals. Specifically, a meaningful
subgroup could be a large portion of the sample (e.g.,
50%) and could erroneously drive the group-level search
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if we employed a looser criterion for group-level selec-
tion of effects. One could also argue in favor of obtain-
ing a set of parameter values that are valid for 100% of
the subjects (e.g., Meinshausen & Bithlmann, 2015). As
described in the preceding, there might not be one model
that is valid for all individuals. Still, one might argue in
favor of using this strict criterion during this stage of the
model building, knowing that individual-level paths will
be added later. This likely would not be useful since the
ability to detect effects in the presence of the expected
noise in fMRI studies has been shown to be less than 100%
even for the best methods (Smith et al., 2011). Hence, a
criterion of 100% seems too strict and would likely result
in numerous missed effects at the group level, thus reduc-
ing the potential benefits from this approach.

The bold black lines in Figure 2 depict the group-level
results obtained on our empirical example. There were
12 group-level paths in addition to the AR effects. All of
the paths were contemporaneous, which is expected given
the low temporal resolution of the fMRI signal (Granger,
1969) and is consistent with previous findings from data
simulated to emulate fMRI data (Smith etal., 2011). These
group-level paths indicate a temporal pattern of relations
that describe this sample and thus may be generalizable to
the greater population of former U.S. football players.

Using the group-level paths as a prior, the original
GIMME then conducts individual-level searches. The
individual-level searches are also guided by MIs with
effects being iteratively selected until an excellent-fitting
model is obtained as indicated by commonly used fit
indices: RMSEA, SRMR, NNFI, and CFI. Two of the four
must be excellent to meet the criteria to stop searching
for additional paths, with “excellent” being < .05 for the
RMSEA and SRMR and > .95 for the NNFI and CFI
(Brown, 2006). It should be noted that these fit indices
assume independence of observations, an assumption
that is violated here since each row is sequentially depen-
dent on the previous timepoint. Violation of this assump-
tion does not render these fit indices useless for these
data. Prior work has demonstrated that these fit indices
are able to consistently identify excellent uSEM model fits
when the models are in fact the generative model (Gates
& Molenaar, 2012; Gates et al., 2010). Stopping the search
according to fit indices rather than continuing even if MIs
are still significant produces more parsimonious models.
More important, it prevents the modification search from
capitalizing on chance, a risk that increases the longer the
search continues (MacCallum, Roznowski, & Necowitz,
1992).

The grey lines in Figure 2 depict the individual-
level paths obtained from using the original GIMME
algorithm on the data example from the former U.S.
football players. Despite the presence of a number of
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Figure 2. Original GIMME results obtained from the empirical example. Black lines indicate group-level effects; gray lines indicate
individual-level effects. Line width corresponds to proportion of individuals having the effect. Dashed lines are lagged; solid lines are

contemporaneous relations.

group-level paths, additional paths were needed at the
individual level in order to explain variability in brain
regions using other brain regions for each person. This
highlights the high degree of heterogeneity and need for
person-specific models that allow for unique effects in
addition to the individual-level weight estimates of group-
level effects.

Subgroups within GIMME

As mentioned in the preceding, starting with some
known priors (in this case, the group-level paths) greatly
decreases errors in detection of true effects at the individ-
ual level of analysis. It follows that if group-level infor-
mation can help guide individual-level searches, then
subgroup-level information can further refine the search
for individuals’ effects. We thus extend the approach of the
data-driven group-level pattern selection to subgroups
prior to arriving at individual-level models. First, we must
identify the subgroups of individuals that have similari-
ties in their temporal patterns. This requires using (a) the
features that are useful and meaningful as well as (b) an
optimal approach for classification.

Feature selection

Feature selection represents a critical decision point for
any cluster analysis approach. As such, much work has
been done to investigate optimal features for clustering of
time-series analysis (Liao, 2005). Since we aim to cluster
individuals on the basis of dynamic processes, we must
identify the most relevant and useful features with which
to do so. A few pieces of work point us in the direction of
features that may satisfy this. First, the temporal features
used would have to be reliable and accurately reflect the
process under study. For fMRI research, it has been shown
that relations among brain regions are best captured with
contemporaneous effects, with lag-0 correlation estimates
reliably recovering true effects (Smith et al., 2011). The
first approach uses these lag-0 correlation matrices as
features with which to identify the degree of similarity
among individuals. Since lagged information has been
shown to also exist in fMRI literature (Gates et al., 2010;
Goebel, Roebroeck, Kim, & Formisano, 2003), our sec-
ond feature-selection approach utilizes a combined lag-
1 and lag-0 correlation matrix. A final and highly reli-
able set of features that describe individuals’ temporal
processes is obtained from GIMME during model



selection. We hypothesize that using features available
within the search procedure could provide more reli-
able subgroups than using features available prior to sub-
grouping.

We explore here three methods for arriving on model
features with which to subgroup individuals: lag-0 cross-
correlation matrices; block-Toeplitz (lag-1 and lag-0) cor-
relation matrices; and clustering using information dur-
ing the GIMME model search procedure (S-GIMME). As
noted in the introduction, two groups have previously
clustered individuals using features obtained from anal-
ysis of fMRI data (Gates et al., 2014; Yang et al., 2014).
The features used for these approaches are not appropriate
here. Gates and colleagues used the results from GIMME
and conducted a community-detection algorithm on a
dichotomized matrix depicting similarity in temporal pat-
terns among individuals. That article introduced a novel
approach for arriving at the optimal threshold with which
to dichotomize the relations. The present approach will
take advantage of developments in community detection
that improve upon the reliability of results for weighted
matrices. Thus we do not include Gates and colleagues’
(2014) approach here since the use of unweighted graphs
is already vastly improved upon with the use of weighted
algorithms. Yang and colleagues (2014) clustered indi-
viduals according to the lag-0 component scores found
in ICA. Since there is no analogue between this and the
GIMME approach, we do not include ICA for feature
selection.

Feature selection approaches tested for comparison

The lag-0 approach is commonly referred to as “func-
tional connectivity” in fMRI literatures (Friston, 2011).
The cross-correlation matrix ryimin at a lag of zero rep-
resents the contemporaneous relations among the vari-
ables (brain regions) for a given person, with each ele-
ment in Fyihin indicating the correlation estimate for two
given variables. These lag-zero ryimin matrices are a pre-
dominant method used in fMRI research, with graph the-
ory measures that describe brain processes often derived
from these types of matrices (Rubinov & Sporns, 2010).
While a lag-0 correlation matrix presents an appropriate
comparison as it is the current standard, we also wished
to test a cross-correlation matrix that includes informa-
tion regarding a lag of one (i.e., a lag-1 approach). In
addition to including information known to exist in an
fMRI signal, this approach better aligns with the infor-
mation used in S-GIMME, which is both lagged and con-
temporaneous. Here, the ryjmin matrix described in the
preceding contains not only the contemporaneous lag-
0 correlations, but also the lag-1 correlations. This is in
a block-Toeplitz framework, which is a block-diagonal
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matrix with contemporaneous effects on the diagonal and
lagged effects on the off-diagonal.

For these correlation-based approaches, we first gener-
ate N correlation matrices of the variables (Fyithin,i ) for
each i from i = 1...N individuals. These are then used to
generate a similarity matrix (fpetween) With each element
indicating how similar each individual is to each other
individual. To arrive at this rpetween, €ach individual’s cor-
relation matrix is vectorized and only the unique m =
[(p —1)(p)]/2 elements are retained (i.e., those in the
strictly lower triangle matrix for the lag-0 matrices and the
unique lag-1 and lag-0 correlations of the block-Toeplitz
matrices). These vectors are then Fisher transformed and
used to arrive at correlation coefficients for how each
individual’s transformed cross-correlations relate to every
other individual’s transformed cross-correlations. This
results in the N x N similarity matrix Ipetween S€pa-
rately for both of the cross-correlation feature selection
approaches described here. While an intuitive approach,
using cross-correlation matrices may not provide a sat-
isfactory signal-to-noise ratio since it does not take into
account indirect effects or third-variable arguments (Mar-
relec et al., 2006; Zalesky, Fornito, & Bullmore, 2012).
Hence, it is expected that the S-GIMME approach will
outperform these commonly used methods for quantify-
ing dynamic processes.

Feature selection used in S-GIMME

We introduce an approach for feature selection, referred
to as the S-GIMME approach here, that is based on infor-
mation available following the initial group-level search.
This leads to an algorithm where the classification is inte-
grated within the data-driven model selection procedures
at the group and individual levels, thereby controlling for
indirect effects that have surfaced as well as individual-
level effects that may arise. Here, the features that are
of the greatest utility in describing individuals’ processes
drive subgroup identification. Specifically, as noted in
the preceding, both the patterns of effects and the sign
of effects have been shown to vary meaningfully across
individuals. Hence, we utilize estimates at the individual
level of the expected parameter change (EPC) associated
with each modification index and the B weights obtained
for each individual’s group-level paths. The value of the
EPC indicates the expected weight for a given parame-
ter should it be estimated in the current model, and it
has been promoted as a useful measure for model mod-
ification (Kaplan, 1991). EPC and B estimates for effects
have two characteristics that make them particularly use-
ful for classifying individuals on the basis of their tempo-
ral processes. One, the EPC and B weights are normally
distributed and are provided along with standard error
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estimates, enabling straightforward identification of sig-
nificance. Two, while MIs are always positive, EPC and B
values take negative and positive values. Thus, we can uti-
lize this information to take into account differences in
sign between two given individuals in addition to the sig-
nificance of effects.

To arrive at the similarity matrix using EPC and B
estimates, we first identify which effects are significant
for each individual according to both the corresponding
EPC for each candidate effect (i.e., possible effect after
the group-level model) and B weight for each group-level
path in the uSEM. The level of significance for the EPC
elements is Bonferroni corrected using a strict criterion
of .05 divided by the number of unique lagged and con-
temporaneous elements in the block-Toeplitz correlation
matrix. The rationale behind the strict criteria for EPC
elements is that the resulting similarity matrix is simulta-
neously utilizing information across all candidate paths,
and some of these paths will be significant for that indi-
vidual simply by chance. Next, the signs of the significant
EPCs and B are noted. The similarity matrix is generated
by counting, for each pair of individuals, the number of
candidate effects (EPCs) and estimated effects (Bs) that
are both significant and in the same direction (i.e., positive
or negative). This results in an N x N similarity matrix (s)
where s;; indicates a count of the number of candidate and
estimated paths that are significant and in the same direc-
tion for each unique pair of individuals i and j. The lowest
number in this matrix is then subtracted from all elements
to induce sparsity.

Classification approach

Hierarchical cluster analysis has long been used in the
social sciences to cluster individuals into subgroups
according to similarities. The difficulty with cluster anal-
ysis is that oftentimes an arbitrary decision must be made
regarding the optimal cut-point, or place on the den-
drogram to stop splitting clusters (or combining, when
using agglomerative approaches that iteratively combine
smaller subgroups into larger ones). Without a stopping
point, all individuals might be placed into a cluster by
themselves (or everyone in one group). This would result
in the same number of clusters as individuals, which is not
the intended goal.

A stopping mechanism called “modularity” has been
introduced within graph theoretic literatures (Newman,
2004). Modularity is a score that indicates the degree to
which similarity with others within a cluster is high rela-
tive to the degree of similarity between clusters. The opti-
mal cut-point in hierarchical clustering is the one with the
maximum modularity. Using a quantitative approach for
arriving at a cut-point obviates the need for the researcher

to decide how many clusters to allow. Community detec-
tion, a class of algorithms for clustering, often uses mod-
ularity, and a proliferation of algorithms has emerged
in the years since modularity was first introduced (see
Fortunato, 2010 and Porter, Onnela, & Mucha, 2009
for extensive reviews). From the numerous community-
detection options available, we must identify which algo-
rithm to utilize on the two correlation similarity matrices
described in the preceding for feature selection (i.e., cross-
correlation matrices obtained prior to model search) and
the sparse count similarity matrix from the third method
(i.e., during the model selection procedure). Walktrap
has emerged as a community detection approach that
uniquely performs optimally for both correlation and
count matrices (Gates, Henry, Steinley, & Fair, in press;
Orman & Labatut, 2009). Additional details regarding
Walktrap can be found in the Supplemental Material.

Model building within S-GIMME

While we test two other approaches for clustering of time-
series data (i.e., the cross-correlation matrices obtained
prior to model building), the final S-GIMME algorithm
utilizes the third feature-selection approach described.
Having arrived at subgroups following the group-level
search, S-GIMME searches for subgroup-level effects in a
similar manner to the group-level search (see Figure 3).
While the significance and sign of the group-level esti-
mates are used to inform subgroup classification, these
paths are always considered to be group-level paths (i.e.,
they do not become subgroup-level paths on the basis of
sign). Beginning with the group-level effects as a prior, S-
GIMME identifies the effect that, if estimated for every-
one in the subgroup, would improve the greatest number
of individuals’ models. It must also improve the major-
ity of individuals’ models. This effect is then estimated
for everyone in the subgroup, with each effect estimated
uniquely for each individual and not influenced by others
in the group or subgroup. As with the group-level search,
the procedure stops adding effects to the models once
there are none that will improve the model for the major-
ity of individuals in that subgroup, which is 51% here since
the subgroups might be small. Finally, using the group-
and subgroup-level paths as priors, S-GIMME searches
for any additional paths that are needed to best explain
each individual’s temporal process. Formally, S-GIMME
identifies the relations among the p observed variables of
length T (with t = 1, 2, ... T ranging across the ordered
sequence of observations):

M = (Ai + Af + ADnis + (@i + O + P
+ {l‘,t’ (2)
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Figure 3. Schema for subgrouping within GIMME (S-GIMME).

where, as before, A is the p x p matrix of contempora-
neous effects among the p variables (with a zero diago-
nal), @ is the p x p matrix of lagged effects where AR
effects are found on the diagonal, and ¢ is the p-variate
matrix of errors for the prediction of each variable’s activ-
ity across time. The superscripts s and g for the parameters
indicate that the matrix has the structure of effects con-
sistent across the kth subgroup and entire group, respec-
tively. Note that subgroup identification k does not change
across time but does differ across individuals, with the
possibility of all individuals being in the same subgroup
(i.e., there are no subgroups). Subscript i indicates indi-
vidual, which in the case of the parameters indicates
individual-level estimates. All parameters are estimated
for each individual separately.

Figure 4 visually conceptualizes the modeling
approach used on fMRI data. In Figure 4, part (c),
the black lines indicate group-level effects that are iden-
tified in S-GIMME and are estimated for all individuals.
Please note that paths can emerge during the subgroup
level that exist for all subgroups. Since everyone in the
sample has the path estimated, it is considered a group-
level path. Next, the subgroups are obtained using the
EPC and B estimates to arrive at an N x N similarity
matrix (Figure 4, part (d)) that is then subjected to the
community-detection algorithm Walktrap. Two sub-
groups were found in this empirical example, with one
containing 36 individuals and the other having 25. The

models for two individuals in the entire sample did not
achieve convergence and are removed from this count.
Following subgroup identification, subgroup-level paths
are obtained uniquely for each subgroup (Figure 4, part
(e)). One subgroup found seven subgroup-specific paths
whereas the other obtained three. Using the group-
and subgroup-level paths as priors, a semiconfirmatory
search is then conducted to arrive at individual-level
paths that are needed to improve that individual’s model
fit (Figure 4, part (f)). As can be seen by the grey lines
depicting individual-level paths, there was a high amount
of heterogeneity. Finally, confirmatory models are run
separately for each individual to arrive at individual-level
estimates for the group-, subgroup-, and individual-level
effects.

Monte Carlo simulation and evaluation criteria

We conduct a series of simulations to evaluate the abil-
ity of the approaches to recover the subgroups and the
data-generating model. First, we provide a descrip-
tion of the data simulations and conditions. Next, we
describe the analyses and criteria that will be used to test
performance.

Data simulations

Data simulations align with parameters seen in empir-
ical fMRI data. As such, the S-GIMME algorithm is
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Figure 4. Steps for obtaining S-GIMME models with empirical fMRI data. (A) and (B) depict the data processing steps to extract time series
for each brain region of interest. Steps (C) through (F) automatically occur within the S-GIMME algorithm: (C) illustrates identification of
group-level effects; (D) presents the similarity matrix that was applied to Walktrap for clustering individuals into subgroups; (E) presents
the subgroup-level effects; and (F) depicts the final models containing group-, subgroup-, and individual-level effects.

evaluated here along three criteria commonly of interest
in fMRI studies: (a) sample sizes of 25, 75, and 150 in
terms of number of individuals (N); (b) number of sub-
groups (K) ranging from 2 to 4; and (c) inequality of the
subgroup sizes (h). While the former two conditions may
seem rather intuitive, the third one, inequality of clus-
ter size, is motivated by the inability of some unsuper-
vised classification algorithms to identify the appropri-
ate number of subgroups when the subgroup sizes dif-
fer (Lancichinetti & Fortunato, 2011; Milligan, Soon, &
Sokol, 1983). Here, h is defined as the percentage of the
total sample that is composed of the largest group minus
the percentage of the sample that is the smallest group.
We used two levels: equally sized groups (h = 0) and one
group comprising 50% of the sample (not applicable for K
=2;h=.25for K=3,and h = .34 for K = 4).

The pattern of group- and subgroup-level effects
across the three levels of K are depicted in Figure 5. In
line with our empirical example, the number of variables
(or brain regions) here is 10 across all simulations. This
number also aligns with simulations of fMRI data gen-
erated by Smith and colleagues (2011). Prior work that
placed participants into subgroups a priori has found

that the average number of individual-level paths ranged
from one to five across four subgroups (Nichols et al.,
2013). This same study, which used seven brain regions,
found that some subgroups had up to four subgroup-
level paths in addition to those found in the group level.
The present empirical example used herein found three
subgroup-level paths for one subgroup and seven for the
other (see Figure 4, part (e)). Individuals here had, on
average, six paths in addition to paths found for the group
and their subgroup (SD = 1.5). This is a higher level of
heterogeneity than sometimes observed in fMRI studies
but is expected given the heterogeneity seen in symptoms
and biomechanics underlying brain processes for those
repeatedly exposed to risk for concussion (Guskiewicz
& Mihalik, 2011). Following from this information, we
generated data to have 10 group-level paths, six subgroup-
level paths, and four individual-level paths (see Figure 5).

Algebraic manipulation of Equation (2) provides the
data-generative model:

(Aj + A5+ AD) (D + 5+ D)
(Ai + A5, + A 3)

Nitk = (Ip -
+ U, —
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Figure 5. Temporal patterns of effects for Monte Carlo simulations. K above each graph indicates the number of subgroups in the data
simulation. Line width corresponds with proportion of individuals in that condition who have a given path.

Using results seen in fMRI literature (e.g., Hillary et al.,
2011) and values used in prior fMRI simulations (e.g.,
Gates et al., 2014), the values for the AR effects (i.e., the
diagonal of the ®$ matrices) were set to be .6 for all indi-
viduals. Path weights for off-diagonal elements in the ®
matrix were —.5, with the contemporaneous values being
.5. While variability in estimates would be expected in a
sample of individuals, prior work has demonstrated that
GIMME is robust to fluctuations in simulation parame-
ters that have a standard deviation as large as .3 in the
parameters (Gates & Molenaar, 2012). Since we utilize
only significant values here to cluster and arrive at final
models, these fluctuations are presently not a point of
interest. In addition to the group and subgroup paths,
four paths were randomly added to the ® and A matrices
for each individual that followed this pattern of weights.
This offers a high level of individual-level paths. The ran-
dom paths were selected from the remaining paths that
were not used in the group or subgroup-level paths. Model
errors were generated to be white noise (N (0, 1)). A total
of 250 observations were simulated for each individual,
of which the first 50 were discarded to remove deviations
due to initialization. This number of observations is at
the lower end of the range of observations expected in
fMRI studies (typically from 150 to 600 observations per
person).

The data and results can be found here: https://
gateslab.web.unc.edu/simulated-data/heterogeneous-
time-series/.

Omitted variable analysis

The present article focuses on uSEM conducted with
observed variables and does not allow for correlations or

bidirectional relations among variables. This inherently
presupposes that all variables needed to appropriately
model the data are contained in the data provided.
In many cases, this assumption may not be met. The
topic of omitted causal variables is widely discussed in
fMRI-related texts (e.g., Pourahmadi & Noorbaloochi,
2016) as well as literature on other causal graph search
approaches (Spirtes, Glymour, & Scheines, 2000) and
Granger causality (Eichler, 2005, 2010; Liitkepohl, 1982),
which, as noted in the preceding, is the approach used
here to evaluate temporal effects.

One option to circumvent the possibility of omit-
ted causal variables would be to allow for latent vari-
ables that reflect underlying constructs (in the case of
brain data, neural networks) or common causes. Com-
plicating this option, it is well known that individu-
als likely differ in their dynamic processes as described
using latent factors for many temporal processes (Mole-
naar & Nesselroade, 2012) including the functional orga-
nization of brain regions into networks (Wang et al.,
2015). The idiographic filter introduced by Nessel-
roade and colleagues (Nesselroade, Gerstorf, Hardy, &
Ram, 2007) circumvents this by allowing for individu-
als to have different estimates relating observed variables
to latent constructs. Unfortunately, it is recommended
that researchers hold the temporal effects among the
latent variables constant (Molenaar & Nesselroade, 2012),
which undermines the focus of the present algorithm,
which seeks to arrive at individual-level directed tem-
poral patterns and estimates among (latent or observed)
variables.

Ancestral graphs (Richardson & Spirtes, 2002) also
circumvent the spurious relations that can surface due
to unmodeled common causes without the use of latent
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variables. This is done by marginalizing and condition-
ing on the original causal model. It is important to note
that in this transformed model the absence of a rela-
tion between two variables indicates independence. Path
diagrams that (a) only allow for one directed or bidi-
rected (correlational) relation for a given pair of vari-
ables and (b) do not allow for “backward” directions
(i.e., no feedback loops) could be considered ancestral
graphs. While a promising approach to circumvent spuri-
ous results due to omitted variables, these properties pre-
vent further exploration of ancestral graphs in the present
modeling approach because the current GIMME search
would always favor correlation over directed arrows since
more variance is explained. In addition, feedback loops
are expected in brain imaging data (even among the con-
temporaneous relations), and thus ancestral graphs may
not always depict the underlying biophysiological process
being examined.

Given the importance of the topic of omitted variables,
we conducted auxiliary analyses to identify the extent to
which variable omission may have a deleterious effect on
the recovery of paths. One might expect an increase of
false positives since the lack of a common cause variable
for two given variables may induce a spurious directed
connection that is not in the generative model. Given
space constraints, we selected one optimal condition for
these analyses: the condition with 150 individuals, 2 sub-
groups, and equal subgroup sizes. The rationale for choos-
ing the condition for which methods will likely perform
optimally is to be able to immediately identify the effect of
omitted variables on S-GIMME without other confounds.
Of course, any decrease in recovery in this optimal setting
would perpetuate down to the other conditions. For this
analysis, we iteratively removed one variable at a time and
ran S-GIMME across the 100 repetitions in this condi-
tion. Since each variable has differing degrees of relations
with other variables in the system, running the analysis
with each variable removed allows for examination of the
average expected decrease in performance taken across all
possible omissions of one variable.

Hubert-Arabie adjusted Rand index to evaluate
reliability in subgroup detection

The Hubert-Arabie adjusted Rand index (ARIy4; Hubert
& Arabie, 1985) has been presented as an optimal metric
with which to evaluate the accuracy of the subgroup
detection. In particular, a Monte Carlo simulation study
demonstrated that the ARIyy is fairly consistent across
conditions that varied in terms of the density of similarity
among individuals, the number of individuals, and the
number of clusters (Steinley, 2004). The ARIy4 provides
a strict assessment of correct placement of individuals

into their subgroup by accounting for chance placement
of individuals. Formally,

ARIpya

(I;]) (a+d)—[(a+ba+c)+ (c+d)(b+d)]

2 5

(1;]) —[a+ba+co)+ (c+d)(b+d)]
4)

where each pair of individuals contributes to the count
for either a, b, ¢, or d. The value a indicates the number of
pairs correctly placed in the same community when they
were in the same community for the “true” generative
algorithm. Both b and c indicate pairs placed in the wrong
communities, with the former indicating individuals that
are truly in the same subgroup but were placed in different
ones and the latter a count of the number of pairs placed
in the same community but truly belonging in different
ones. Finally, d indicates the count of pairs that were
correctly placed in different communities. ARIy4 has an
upper limit of 1, which indicates perfect recovery of the
true subgroup structure. Values at or greater than 0.90
can be considered an indication of excellent recovery,
with values at or over 0.80 being good recovery, values
equal to or over 0.65 being moderate, and under 0.65
indicating poor recovery (Steinley, 2004).

Ramsey indices to evaluate recovery of temporal
patterns of effects

The Ramsey indices are outcome measures used to eval-
uate accurate path recovery. They rely on counts of the
number of (a) paths and (b) directions of paths in the true
and fitted models. The four indices are termed here, “Path
Recall,” “Path Precision,” “Direction Recall,” and “Direc-
tion Precision” (Ramsey et al.,, 2011). “Recall” indicates
the proportion of paths or directions recovered in the
fitted model that exist in the true model. This measure
assesses the algorithm’s ability to find relations that do
exist, but does not take into account the presence of false
positives, or phantom paths that were recovered but do
not exist in the true generative model. For this reason we
also use “precision,” which indicates the ratio of true paths
(directions) recovered in the results to the total number of
paths (directions) that exist in the recovered model. With
these indices, we assess the recovery rates of true and false
relations.

Effect sizes

Cohens d is used to quantify the effect sizes for compar-
isons between the methods and the conditions, which is
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Figure 6. Accuracy in classification. Depiction of accuracy in correct subgroup designations across the conditions as assessed by the
Hubert-Arabi adjusted Rand index (ARI,,,). N indicates total number of individuals simulated in condition; “Lag0 Correlation” and “Lag0-
Lag1 Correlation” refer to classification prior to GIMME cross-correlation matrices at lag-0 and lag-1, respectively; “S-GIMME" refers to clas-
sification occurring during GIMME model search procedure (S-GIMME) using expected parameter change and B estimates. S-GIMME out-
performed classifying prior to model search using cross-correlation matrices.

preferred over significance testing due to the multiple tests
as well as the high power. Conventional interpretations of
effect sizes are followed, with values of 0.20, 0.50, and 0.80
indicating small, medium, and large effect sizes, respec-
tively (Cohen, 1988).

Monte Carlo results

Subgroup recovery

Across all conditions, classifying individuals during
model selection (i.e., S-GIMME) arrived at the true sub-
group classification at higher rates (94%) than classi-
fication prior to model selection with either the lag-0
(66%) or lag-1 (65%), with effect sizes for the differ-
ence aggregated across conditions being large when com-
pared against the lag-0 (d = 1.30) and lag-1 approach
(d = 1.32). All approaches did share some similar fea-
tures. Specifically, the recovery rates decreased as sam-
ple size decreased, as the number of subgroups increased,
and as the subgroup allocation became unequal. How-
ever, throughout all conditions, the S-GIMME algorithm
outperformed the cross-correlation feature selection
approaches.

Looking across sample size for equally sized groups
(top panel of Figure 6), the S-GIMME method for feature
selection nearly perfectly recovered the true subgroup
pattern across all sample sizes and number of subgroups
tested. As N decreased, S-GIMME markedly outper-
formed the correlation-based methods, with d = 1.42 for
the aggregate difference between the cross-correlation
and S-GIMME approaches for N = 25 with equally sized
subgroups. In fact, the S-GIMME method performed
excellently at each level of N when equal subgroup sizes
were present, with ARIy4 averaging 0.94 across the con-
ditions (see Supplemental materials for average ARIy4
and standard deviations for each condition).

The largest difference in performance for the
correlation-based versus S-GIMME methods occurred
for equal subgroup sizes in the N = 25 and k = 4 condi-
tion, which had a very low average ARIy, of .36 for lag-0
and .33 for the lag-1 correlation-based methods. This
highlights a problem of much interest in the community-
detection literature: techniques for unsupervised classifi-
cation often fail to recover small subgroups (Lancichinetti
& Fortunato, 2011). Walktrap, however, has been found to
be uniquely able to recover small subgroups (Gates et al.,
in press) and was used for all clustering in the present
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article. Here, the S-GIMME method had an average
ARIp4 of 0.80, which is considered good by standard cut-
off values (Steinley, 2004). There was a large effect size of
d = 2.28 for the difference between the approaches for this
specific condition. This suggests that a combination of
appropriate feature detection and clustering method must
be used to appropriately recover subgroup assignments.

S-GIMME also performed excellently across most of
the unequal subgroup size conditions (i.e., one subgroup
comprises 50% of individuals) with an average ARIy4 of
.93. The correlation-based methods performed notably
worse as the subgroup sizes became unequal (average
ARIys = .67). This further highlights the difficulty in
arriving at the true subgroup structures in nuanced data
that contain smaller subgroup sizes using the features
available prior to model selection. Neither of the cross-
correlation feature-selection methods could recover four
disproportionately sized subgroups even with a moder-
ate sample size of N = 150 (average ARIys = .56 and
.61 for lag-0 and lag-1, respectively). By contrast, the S-
GIMME method recovered the true subgroup structure at
a far higher rate (average ARIy4 = .90), with a large effect
size of d = 2.61 for the difference in the two approaches
for this condition.

The S-GIMME method did evidence decreased recov-
ery rates with smaller sample sizes and greater number of
subgroups in the unequal subgroup condition. For exam-
ple, with N = 75 and N = 25 with subgroups of four, aver-
age ARIy, decreased to .83 and .73, respectively. While
still acceptable, these rates do not match the rate seen in
N =150. When there were two subgroups at these sample
sizes, S-GIMME performed excellently (average ARIy4 of
.99 and .89, respectively). In summary, our results demon-
strate that the S-GIMME method that detects subgroups
during GIMME’s data-driven model discovery is a bet-
ter option for researchers than classifying individuals by
using the raw correlation matrices depicting temporal
processes.

Modularity as an indication of accurate subgroup
recovery

The results indicate that utilizing the Walktrap approach
can return subgroup classifications consistent with the
generation of the simulated data. As described in the
preceding, modularity can be used to indicate how well
the individuals (“nodes” or “vertices”) in our similarity
matrices were partitioned (Porter et al., 2009). While use-
ful for detecting the best partition within a set obtained
for the same sample, using modularity on its own to
evaluate the appropriateness of a solution when looking
across studies may not be appropriate (Karrer, Levina,
& Newman, 2008). The present results further suggest

that caution must be used when relying on modularity
as a measure of accurate subgroup recovery. Recall from
the preceding that modularity has an upper limit of
one. Despite near-perfect classification across all con-
ditions, the S-GIMME method averaged a rather low
modularity of .15 (SD = .08). Furthermore, the rela-
tion between modularity and ARIy4 returned a small
effect with a Pearson’s correlation coefficient of .105.
Thus, while modularity appears to work well as a stop-
ping mechanism for arriving at final solutions in some
community-detection algorithms by rank ordering par-
titions according to this score, fluctuations in modularity
did not indicate better or worse recovery of subgroups in
these data when looking across data sets. Thus, modular-
ity may not be an appropriate mechanism for assessing
absolute (as opposed to relative) quality of subgroup
partitions.

Path recovery

GIMME recovered the true underlying paths, including
the direction of paths, in the models at an exceptionally
high rate with or without using the classification proce-
dures. As expected, using S-GIMME improved upon the
recall of the recovery of both the presence and directions
of paths when looking across all of the conditions (see
Figure 7 and Supplemental Tables 2 and 3). GIMME and
S-GIMME both performed nearly perfectly in terms of
recovering the group-level paths (Table 1). However, the
accuracy in path recall for the subgroup- and individual-
level paths differed between the two approaches with S-
GIMME performing better on these (d = 4.78). Both
of these methods performed slightly worse in the pres-
ence of disproportionate subgroup sizes. Otherwise, the
approaches consistently returned reliable results despite
the number of subgroups or the number of individuals.
Opverall, false positives are not a problem for any of the
GIMME approaches tested, with averages for path preci-
sion being well above 80% for both the original GIMME
and S-GIMME approaches. Across all conditions the pre-
cision was higher than recall for each approach, indicat-
ing that the GIMME algorithms did not recover all the
true paths in some conditions because the search proce-
dure stopped too early rather than running the risk of
adding paths that do not truly exist. This appears to be
the cost for ensuring that false paths are not selected, and
this favoring of parsimony is common in these types of
model searches (e.g., Ramsey et al., 2010). Still, a smaller
but still noteworthy difference was seen in the precision
of the recall of paths in favor of S-GIMME (d = 0.70), but
both approaches performed exceptionally well in terms of
precision even when only considering the subgroup- and
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Figure 7. Heat map depicting the accuracy in recovery of presence and directions of paths. N indicates total number of individuals simu-
lated in condition; Kindicates the number of subgroups in the data simulation; Path Rec. = path recall (proportion of true paths recovered);
Path Prec. = path precision (proportion of paths recovered that are true); Direct. Rec. = direction recall (proportion of true path directions
recovered); Direct. Prec. = direction precision (proportion of path directions recovered that are true). Classification with EPC (expected
parameter change [EPC-Based] during GIMME model selection; S-GIMME) recovered the true presence and direction of paths at the high-

est rates at high precision.

individual-level paths. Thus, the improvements in recov-
ery rates for S-GIMME did not come at the expense of
increased false positive rates.

Omitted variable analysis
Opverall, subgroup recovery was not greatly influenced by

an omitted variable with an average ARIy4 = .98 (SD =

Table 1. Average Ramsey indices for group-level and other paths
separately.

Path type Index Original GIMME S-GIMME
Group- Path Recall 98.38 (1.89) 100.00 (0.07)
level Path Precision 100.00 (0.00) 100.00 (0.00)
Dir. Recall 97.92 2.1) 99.55 (0.40)
Dir. Precision 99.59 (1.14) 99.70 (0.75)
Other Path Recall 67.63 (3.04) 80.26 (2.28)
Path Precision 87.56 (7.60) 93.06 (8.01)
Dir. Recall 63.85 (3.069) 76.77 (3.12)
Dir. Precision 84.41(8.12) 91.23 (9.96)

Note. “Other” refers to both subgroup- and individual-level paths; Dir. =
direction.

.03), which is comparable to results on S-GIMME (ARI4
= 1.00, SD = .02) run on the full set of variables with
a small to moderate Cohen’s d of .39 for the difference.
Path recall was similarly somewhat robust to the presence
of an omitted variable. Recall of paths actually increased
when a variable was omitted, which is likely due to there
being fewer paths to recover. As anticipated, precision
was slightly lower but still in the acceptable range with
the average across all variable omissions being 94%. This
suggests that a greater number of false positives were
obtained when compared to the original, which had very
few false positives as revealed by an average path preci-
sion of 100%. Thus while favoring parsimony generally
assists in the prevention of false negatives, the omission
of even one variable will likely increase the likelihood of
false positives even in the most optimal conditions. This is
particularly true if the data-generative model for omitted
variable has a higher number of paths relating it to other
variables. Additional details on these results are found in
the Supplemental Materials and in Supplemental Table 4.
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Discussion

The present article introduces an approach, subgrouping
within GIMME (S-GIMME), for unsupervised classifi-
cation of individuals according to their dynamic pro-
cesses. Specifically, S-GIMME conducts the community-
detection algorithm Walktrap (Pons & Latapy, 2006) on
temporal features available during GIMME model build-
ing. After arriving at the group-level effects (i.e., dynamic
relations that can be considered nomothetic or present
for the majority), S-GIMME identifies effects that may
be specific to each subgroup. Finally, as with the original
GIMME algorithm, S-GIMME conducts individual-level
searches. All weights are estimated at the individual
level—even for those temporal relations found to exist at
the group or subgroup levels. S-GIMME is freely available
within an R package (Lane, Gates, & Molenaar, 2016) . By
providing these three patterns of effects, researchers are
able to make generalizable inferences, identify effects that
are specific to subgroups of individuals, and control for
and discover individual-level effects.

We demonstrated that classifying individuals in this
manner provides two benefits. First, individuals are
placed in subgroups with other individuals who share
some of their patterns of dynamic effects. The success
rate for recovering the true subgroup structure by utiliz-
ing S-GIMME, which classifies individuals during model
selection, was higher than classifying individuals accord-
ing to features available prior to the beginning of the
model-selection process (i.e., cross-correlation matrices).
S-GIMME demonstrated robustness for sample sizes as
small as 25. Results were robust at this sample size even
when subgroups were small and when the subgroup sizes
were unequal. These last two issues are commonly dis-
cussed in the field of community detection since they are
difficult to circumvent (Lancichinetti & Fortunato, 2011).
While there still is room for improvement in these condi-
tions, using Walktrap in addition to our refined feature-
selection approach appears to accommodate this issue.
In the end, S-GIMME provides reliable subgroup assign-
ments based on temporal patterns of effects.

As a second benefit, S-GIMME slightly improves
recovery of the presence and direction of effects when
compared to the original GIMME. It has been established
previously that GIMME is one of the few data-driven
approaches that can robustly detect both the presence
and direction of effects in individuals that exhibit het-
erogeneous processes across time (Gates & Molenaar,
2012; Mumford & Ramsey, 2014; see Smith et al., 2011 for
competing approaches). One reason GIMME performs
so well is that it begins the individual-level searches with
prior information obtained by detecting signal from
noise across the entire sample. It has been demonstrated

previously that using these priors (which are considered
the “group-level” patterns of effects) vastly improves
the correct detection of model recovery as compared
to conducting individual-level model searches with no
prior information (Gates & Molenaar, 2012). S-GIMME
builds from this knowledge by conducting a subgroup-
level search to further improve upon the precision and
recall of effects at the individual level. By adding addi-
tional prior information to the individual-level search
informed by other individuals with similar patterns of
effects, S-GIMME is even better able to arrive at reliable
results.

In the end, the present set of simulations found that
(a) S-GIMME appropriately clusters individuals into sub-
groups according to their temporal models and (b) reli-
able group-, subgroup-, and individual-level patterns of
dynamic effects were returned. This was tested across var-
ious conditions typical in fMRI research: varying num-
ber of individuals (with the number being smaller than
typical in other psychology research); varying number
of subgroups; varying subgroup sizes; and omission of a
variable. Decreased performance was seen for small sam-
ple size and numerous subgroups, but indices reflecting
the quality of results were still in acceptable ranges and
outperformed the correlational approaches. While per-
forming robustly in the optimal setting when one variable
was omitted, S-GIMME could likely be improved upon
by enabling the inclusion of latent variables to capture
omitted common causes. From a statistical standpoint, S-
GIMME can immediately be extended to include latent
factors from within a dynamic factor analytic framework
(Molenaar, 1985). However, heterogeneity in the latent
structures across individuals poses a hurdle that requires
more testing. In particular, more work needs to be done
to examine the robustness of S-GIMME in the presence
of latent variables and the conditions in which common-
alities across individuals must be retained.

While development of statistical methods for
individual-level analysis of humans has long been under
way (e.g., Cattell, Cattell, & Rhymer, 1947; Molenaar,
1985), widespread application is in its early stages. The
work presented here marks one of many intermediate
points. Daily diary or momentary assessments will likely
present a number of obstacles not considered here or seen
in neuroscience applications. One potential problem for
the proposed technique would be low variability for some
individuals on some variables, which may occur when
an individual reports the same response across all time-
points. Two, it is highly likely that the time series will be
shorter than what is presented here or anticipated in fMRI
research, thus reducing the power with which to detect
effects and the number of variables than can be included.



A third issue is that some processes may best be cap-
tured solely with contemporaneous effects, which likely
poses problems for an algorithm that only includes the
directionality of effects (MacCallum, Wegener, Uchino,
& Fabrigar, 1993). Allowing for bidirectional or correla-
tional effects is done in other directed search procedures
(as discussed in Spirtes et al.,, 2000) and could inform
this development in S-GIMME. In terms of correctly
identifying the direction of an effect, including even weak
autoregressive effects may still enable the algorithm’s
ability to recover directionality from within a Granger
causality framework. As another option, Beltz and Mole-
naar (2016) introduced an algorithm for arriving at
multiple solutions for GIMME to circumvent this issue.
More work is needed to integrate these developments into
S-GIMME to enable robust recovery of contemporaneous
effects.

A fourth issue is that, at the other end of the spec-
trum, perhaps other forms of data require lags greater
than one. As the S-GIMME operates from within a block-
Toeplitz framework, the addition of additional lags greatly
increases the number of variable but may be necessary
in some cases (see Beltz & Molenaar, 2015). This might
cause problems for estimation if the number of vari-
ables becomes large relative to the number of observa-
tions (Bollen, 1989). It might also introduce issues with
the use of fit indices in this context. Future work could
arrive at fit indices by adapting the approach used in the
DyFA program for arriving at model likelihood. Here,
only the unique correlation matrices (i.e., contempora-
neous and lagged in the uSEM case) would be used to
arrive at the residual sum of squares (Browne & Zhang,
2005). A fifth noteworthy property of ecological momen-
tary assessments that is not seen in psychophysiological
observations is that of unequal intervals. While this poses
a problem for the current approach, models of continu-
ous time (e.g., Boker & Bisconti, 2006; Chow, Ram, Boker,
Fujita, & Clore, 2005; Deboeck, 2013) can overcome this
issue. In this case, perhaps S-GIMME could be used to
identify the model on data that have been interpolated
to provide equally distant timepoints. Following arrival at
the structure of effects, continuous time-series models can
be fit using R packages such as dynr (Ou, Hunter, & Chow,
2016) or ctsem (Voelkle, Oud, & Driver, 2016). Finally,
the procedure used here is an unsupervised classification
approach. Some researchers may wish to have static fea-
tures, such as diagnostic category, help drive the subgroup
search or allow for continuous class assignments. These
issues and more can help guide development of S-GIMME
and other methods used for the study of individual-level
processes.

The developments presented here are timely and
could be helpful across varied domains of inquiry within
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psychological sciences given the high degree of hetero-
geneity seen in humans’ temporal patterns. The field of
neuroscience has already embraced this reality, with
individual-level temporal processes highlighted as a
golden standard that researchers should aim for (Finn
et al., 2015; Laumann et al., 2015) and much work being
done to identify statistical methods for doing so. Using
functional MRI data, researchers have been able to iden-
tify clusters of individuals within a clinical sample who
have shared brain features (Gates et al., 2014; Yang et al.,
2014), indicating the utility of such approaches in refining
the field’s diagnostic process. Psychophysiological data
have long provided ample timepoints for individuals,
making time-series analysis historically more applicable
to neuroscientists than other researchers. However, with
the increasing use of wearable data technologies, ecolog-
ical momentary assessments, and encoding of observed
behavioral data, researchers across varied domains of
the social sciences are primed to conduct time-series
analysis. Indeed, one application has utilized cluster
analysis to find meaningful subgroups of individuals on
behavioral time series (Babbin, Velicer, Aloia, & Kushida,
2015), suggesting the utility of this type of approach on
behavioral data in addition to neuroscience applications.
S-GIMME provides one solution for researchers with
multivariate time series. By identifying clusters of indi-
viduals with shared temporal features, S-GIMME may
help guide prevention, intervention, diagnostic criteria,
and treatment protocols as well as inform basic science
regarding human processes.
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