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At its best, connectivity mapping can offer researchers great insight into how spatially disparate regions of
the human brain coordinate activity during brain processing. A recent investigation conducted by Smith
and colleagues (2011) on methods for estimating connectivity maps suggested that those which attempt
to ascertain the direction of influence among ROIs rarely provide reliable results. Another problem gaining
increasing attention is heterogeneity in connectivity maps. Most group-level methods require that the data
come from homogeneous samples, and misleading findings may arise from current methods if the connectiv-
ity maps for individuals vary across the sample (which is likely the case). The utility of maps resulting from
effective connectivity on the individual or group levels is thus diminished because they do not accurately in-
form researchers. The present paper introduces a novel estimation technique for fMRI researchers, Group It-
erative Multiple Model Estimation (GIMME), which demonstrates that using information across individuals
assists in the recovery of the existence of connections among ROIs used by Smith and colleagues (2011)
and the direction of the influence. Using heterogeneous in-house data, we demonstrate that GIMME offers
a unique improvement over current approaches by arriving at reliable group and individual structures
even when the data are highly heterogeneous across individuals comprising the group. An added benefit of
GIMME is that it obtains reliable connectivity map estimates equally well using the data from resting state,
block, or event-related designs. GIMME provides researchers with a powerful, flexible tool for identifying di-
rected connectivity maps at the group and individual levels.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Brain connectivity maps represent the state-of-the-art methods
for understanding brain processing. Despite great advances in the
field, the utility and robustness of these methods often fall short
(Smith et al., 2011). One routinely overlooked cause of inaccuracies
in connectivity maps, also called “networks”, is the aggregation of
the data across individuals prior to estimation (Kherif et al., 2003;
Ramsey et al., 2010). Statistical and empirical work has demonstrated
that in cases where processes are heterogeneous across individuals,
aggregation of the data to arrive at a “group” solution may fail to de-
scribe any individual in the sample (Miller and van Horn, 2007;
Molenaar and Campbell, 2009). While researchers acknowledge that
the group model may not describe any one individual, they rarely as-
sess the degree to which the resulting model describes the individ-
uals comprising the group. Hence it typically remains unknown if
the published findings derived from data aggregated in this manner
relate to how individuals' brains actually function. This is particularly
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evident in the case of effective, or directed (Friston, 2007), connectiv-
ity mapping approaches.

There are three primary ways that group models may fail to de-
scribe individuals in the context of effective connectivity modeling.
First, the beta weights (parameters associated with the couplings
of two regions) may vary across participants. Evidence exists for
beta weights systematically varying across subjects (e.g., Kim et al.,
2007), and examination of how variation in beta weight estimates
relates to clinical diagnoses or performance is a focal point for
many researchers. Only if the influence that other ROIs might have
on the target ROI is explicitly accounted for may unbiased estimates
be obtained for the beta weight of interest. Hence, acquiring reliable
connectivity map structures is a first requirement for analysis on the
beta weights.

Second, the network of couplings among ROIs may differ. Emerg-
ing evidence suggests that much heterogeneity in brain processes ex-
ists across individuals both in terms of the presence of relations
among regions (Fair et al., 2010; Hillary et al., 2011) and which re-
gions become active (Kherif et al., 2003, 2009; Miller and van Horn,
2007; Miller et al., 2002; Seghier et al., 2008). When traditional
group-level analysis is conducted on processes which differ, spurious
findings emerge (e.g., Miller and van Horn, 2007; Miller et al., 2002).
To date, the predominate methods for analyzing brain data assume
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homogeneity across individuals despite these findings that individ-
uals may differ greatly (although one study found evidence for simi-
larities in connectivity maps, see James et al., 2009). Taken together,
it appears that there may be some paths that are common to the
majority of individuals comprising the group while some paths may
be unique to certain individuals or to a subgroup of individuals. This
may be because of different relations among the regions selected for
connectivity analysis, or perhaps because for some individuals a
region is not part of the connectivity map. If the presence of paths
differs among individuals, then the aggregated results may not repre-
sent any of the individuals comprising the group (Molenaar and
Campbell, 2009). Currently, no method utilizes shared information
during model selection to find paths common to the group while all-
owing for paths unique to individuals.

Third, connectivity maps may evidence heterogeneity across indi-
viduals in terms of the direction of an effect. Much attention has been
given to the inadequacy of most individual-level effective connectivity
approaches for arriving at models that identify both the presence and
direction of connections (Smith et al., 2011). In this examination of
both effective and functional connectivity mapping approaches,
methods for arriving at connectivity maps that are agnostic in terms
of directionality when detecting the presence of a relation prevailed.
Hence little is known about the true degree of heterogeneity that may
exist across individuals in terms of the direction of effects between a
given pair of ROIs since previous inferences (particularly those drawn
from lagged methods) may have relied on spurious findings.

Examination of functional heterogeneity in brain processing
across individuals first requires reliable recovery of true effects. This
is true for the examination of varying strengths or different patterns
of relations among regions. One potential solution would be to first
arrive at individual-level maps and then identify subgroups (should
they exist) using graphical clustering across individuals (Van den
Heuvel et al., 2008). Given recent evidence that even the best
methods fail to recover the structure of effective connectivity maps
at the individual level when certain types of noise and conditions
are present (Smith et al., 2011), this approach may lead to spurious
findings since the subgroups will be based on unreliable maps. On
the other end of the spectrum, Ramsey et al. (2011) have achieved
great success when using a multi-sample approach for estimating ef-
fective connectivity maps. Building from the Greedy Equivalence
Search (GES; Meek, 1997), an approach which identifies candidate
paths to free up using a score function based on the maximum likeli-
hood estimations, the approach capitalizes on commonalities among
individuals to arrive at a group model (Ramsey et al., 2010). Exten-
sions of this approach were recently applied to the Smith et al.
(2011) data sets and have surfaced as the first set of methods for
identifying true connections as well as the directionality with as few
as 10 individuals in a group (Ramsey et al., 2011). James et al.
(2009) developed a promising model selection approach that applies
all viable models to data concatenated across individuals and selects
the best one. Going one step further than many researchers, James
et al. (2009) assessed the degree to which the group-derived model
fit individuals. The group-derived model for an empirical data set fit
85% of the individuals excellently. Clearly powerful procedures
which offer an improvement upon connectivity models to date, both
require concatenation across individuals much like other current
methods, suggesting that it may be best for situations in which homo-
geneity is suspected.

The presence of noise in fMRI data further confounds the issue of
heterogeneity. An approximation of neural activity, fMRI data is sub-
ject to many sources of noise due to measurement error which may
make individuals' processes look different when they are same. The
Smith et al. (2011) simulations provided an excellent opportunity to
investigate the impact of varied neural–hemodynamic relations on
the ability to recover reliable connectivity maps. Their results have
become the benchmark for success when evaluating the utility of
novel analytic methods. In the scenario where one neuronal input in-
fluences activity across all ROIs, the best of 38 methods tested recov-
ered only 50% of the true connections. In the face of shortened neural
lags and shared inputs the best recovery rates neared 70%. In this way,
individual nuances outside the control or the measurement of the re-
searcher may produce maps which appear heterogeneous when in
fact the neural structure is homogeneous across individuals.

These realities place researchers at a quandary. On the one hand,
true heterogeneity in individual processes may make group-level
findings erroneous because the resulting map may not apply to any
one individual (Miller and van Horn, 2007; Molenaar, 2004; Ramsey
et al., 2010). On the other hand, the signal-to-noise ratio in fMRI
data may be too low for reliable recovery at the individual level, mak-
ing designs which capitalize on shared information across individuals
appear to be a promising approach. Recently, a suggestion has been
made for the development of a procedure that enables individual-level
modeling while arriving at robust similarities across individuals (Smith,
2012). We present a timely, reliable, and novel approach, the Group It-
erativeMultipleModel Estimation (GIMME), which addresses the issue
of heterogeneity (i.e., the need for individual-level maps) in effective
connectivitymappingwhile capitalizing on shared information to arrive
at group inferences. The model estimation procedure incorporates the
following improvements. First and foremost, the selection procedure
of candidate paths utilized by GIMME appropriately picks up signal
from noise to arrive at a common structure among individuals (should
one exist) that appropriately describes the majority of individuals. Sec-
ond, GIMME continues to evaluate candidate paths at the individual
level, freeing those paths for that individual which will improve the
model fit. Taken together, this approach enables reliable group
inferences with a model selection algorithm similar to those based on
maximum likelihood improvements (James et al., 2009; Ramsey et al.,
2011) that diverges from these approaches by enabling reliable estima-
tion of paths unique to the individual and not forcing a group model.
This paper presents the formal aspects of GIMME and demonstration
of GIMME using the homogeneous Smith et al. (2011) data and hetero-
geneous in-house data.

Methods: formal explication of GIMME

GIMME estimates both the unified SEM (uSEM; Kim et al., 2007)
and extended unified SEM (euSEM; Gates et al., 2011). The uSEM as-
suages problems encountered when solely lagged or contemporane-
ous relations are modeled with fMRI data (Gates et al., 2010) and is
useful for block designs (when the researcher would like separate
maps for each block) and resting-state analysis. The euSEM builds
from uSEM by allowing for direct and modulating (i.e., bilinear) ex-
perimental manipulation effects (much like the DCM) for block and
event-related designs. The logic behind GIMME follows directly
from well-established principles. GIMME first identifies a group
model (i.e. a connectivity map common to most individuals in the
sample) by selecting paths which will improve the majority of indi-
viduals' maps in an iterative forward selection procedure. Next,
individual-level paths that will optimally improve that model are
opened (Gates et al., 2010).

GIMME may be applied to most connectivity mapping approaches
and has been tested for use with effective connectivity methods. We
focus here on the euSEM (Gates et al., 2011) since it contains within
it the uSEM (Kim et al., 2007) and thus offers a more general descrip-
tion. The euSEM is as follows:

η tð Þ ¼ Aη tð Þ|fflffl{zfflffl}
Cont:

þ
Xq
m¼1

ϕmη t−mð Þ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Lagged

þ
Xk
j¼0

ϒmu t−jð Þ
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Input

þ
Xs

m¼1

Xr

j¼1

τmjη t−mð Þu t−jð Þ þ ζ tð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Modulating

ð1Þ
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Fig. 1. Time-varying influence of simulated series ROI 4 onROI5 as a function of onset vec-
tor representing experimental manipulation in an event-related design (τm,j u(t−j)).
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where q, k, s, and r represent the lags, η(t), t=1,2,…,T, indicates the
manifest p-variate timeseries of ROI activity (where t ranges across
the sequence of scans), Α the (p,p)-dimension matrix of contempora-
neous relations among ROIs, φm the (p,p)-dimension matrix of the as-
sociations among ROIs at a lag of m, u(t−j) a univariate input series
at lag j (which may be expanded to include multiple inputs) con-
volved with a hemodynamic response function which models the
lag between neuronal activity and blood response known to exist in
fMRI data (Sarty, 2007), ϒj a vector of input effects on ROIs, τm,j the
(p,p)-dimension matrix associated with the bilinear term η(t−m)
u(t−j), and ζ(t) a p-vector error series assumed to be a white noise
process. The linear combination τm,j u(t−j) represents the modulat-
ing effect of the input u(t−j) on the connections among ROIs at lag
j (see Fig. 1). Please note that u(t− j) may be an input vector
from any design; in the case of a block design a series of ones
would indicate when a specific condition was present whereas
for an event-related design the ones may be spread out more.
The input vector may even indicate the participant's response, such as
when a wrong answer is given, to identify processes relating to poor
performance. In this last case, the ability to detect an effect may differ
across participants (e.g., the power to detect effects among those with
few incorrect answerswill be lower than thosewithmany incorrect an-
swers). GIMME will help in detecting these effects by looking across
individuals.

The euSEM as written above applies to a single multivariate time
series (i.e., a series of scans at a given TR) which may be an
individual's series of node activity when run on individual data or
may be for a series representing the group by aggregating the data
into one series. GIMME further extends this modeling approach by
identifying a connectivity map structure for the group as well as con-
nections for the individual. The above general equation may be modi-
fied as follows to represent this by adding the subscript “i” to indicate
the parameters unique to the i-th individual, i=1,2,…,N, and the super-
script “g” to indicate parameters in the group model:

ηi tð Þ ¼ Ai þ Ag� �
ηi tð Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Contemporaneous

þ
Xq
m¼1

ϕi;m þ ϕg
m

� �
ηi t−mð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Lagged
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j
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|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Modulating

:

ð2Þ

Setting q=k=s=r=1 represents a model for a lag of one. A no-
table characteristic of the parameter matrices Ag, ϕg, ϒg, and τg is that
theywould not be identical to those found in the first equation but rath-
er indicate the mean parameter matrices found for the group using the
iterative procedure described above. For connectionswhich do not exist
in the group model, the mean will likely be near zero since the param-
eter is not estimated for everyone. The distribution of those parameters
not identified in the group model will thus be bimodal (or even
trimodal if there are negative and positive estimates across individuals)
rather than normal, with a spike at zero. This represents an important
difference from random effects models which induce a normal distribu-
tion on parameters under the assumption that one model can explain
all individuals. Unlike random(ormixed) effectsmodels, GIMMEallows
for the structure of the connectivity maps to be unique across individ-
uals (i.e., person-specific).

Model identification via LISREL uses quasi-maximum likelihood
estimation (Jörekog and Sörbom, 1992; Molenaar, 1985) which con-
sists of deriving the covariance matrix of the ROIs at a finite number
of lags, and in the case of euSEM estimation, the direct and bilinear ef-
fects of experimental manipulation. It capitalizes on the fact that
GIMME is linear in the parameter matrices, enabling straightforward
derivation of the implied covariance structure and application of the
commercially available SEM software to fit the model.
The model selection procedure begins by running the null (empty)
model on each participant's data using the proprietary LISREL program.
In the case where a priori anatomical or other knowledge suggests cer-
tain paths should be freed, the following path-selection procedure may
be implemented in a semi-confirmatory manner by having the null
model include the desired paths. In either case, running the null
model results in a matrix of Lagrange multiplier test equivalents called,
“modification indices” (MI; Sörbom, 1989) for each individual. These
asymptotically chi-square distributed indices indicate the expected in-
crease in likelihood if that parameter (in this case, path) were freed.
These values will be sensitive to the order in which candidate paths
are freed since estimating a chosen path will influence howmuch vari-
ation remaining candidate paths may explain. The candidate paths rep-
resent lagged or contemporaneous effects if the uSEM is implemented
for resting-state or block design data, and lagged, contemporaneous, ex-
perimental manipulation, or bilinear effects (i.e., how the relationship
between two ROIs is modulated by a given experimentalmanipulation)
if euSEM is implemented for the data from event-related designs.

When conducting analysis on a single data set, the MI indicates
which parameter (path) would optimally improve the individual
model if freed. The GIMME program follows this rationale by identify-
ing which MIs are significant at the .01 level. The parameter selected
to be freed for the group is the one that is significant for the greatest
number of individuals. By looking across individual samples for consis-
tency, effects common to most become clear. This signal processing ap-
proach is most common in genomics (e.g., Guttman et al., 2007). The
goal at this stage is to identify the existence of any paths common to
the group. Thus it is necessary to require that model fits would signifi-
cantly improve for the majority of individuals. Towards this end, each
candidate parameter receives a count of howmany individuals' models
would significantly improve at the .01 level if the parameterwere freed:

Dj ¼ ∑N
i¼1Yj;i=N

where
MIj;i≥χ2

1;∝¼:01; Y ¼ 1
MIj;i < χ2

1;∝¼:01 Y ¼ 0

( ð3Þ

‘j’ indicates the candidate parameter, ‘i' the individual,Dj the propor-
tion of individuals for whom a relationship is detected, χ1,∝=.01

2 the
nominal value of the chi-squared variate with one degree of freedom
at the chosen alpha of .01, and Y indicates the presence or absence of
the detection of a path according to the MI.

The proportion for what constitutes the cutoff, i.e., the expected
value of Dj needed for the parameter to be freed across all individuals,
may be set by the researcher. A value of 1.0 would necessitate that
this parameter, if freed, would describe each individual's map. For
data such as fMRI data which likely contains much noise (as discussed
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in the Introduction) and potential for false negatives, a looser criteri-
on may be appropriate. In the case of GIMME, the detection of a con-
nection is directly related to the MIs, which are generated for each
individual independent of other individuals in the sample. Smith et
al. (2011) indicate that, across “typical” data sets, the following prob-
ability of detection the presence of an effect may be expected for each
session length: “60min: 100%; 10min: 95%; 5min: 77%; and 2.5min:
59%” (p. 887). Probability of detection at the individual level varies
across method of choice and length of series.

To recap the group model selection procedure, the program itera-
tively identifies the next parameter (directed path) that optimally
improves the fit of the common model for most individuals according
to the Dj criterion described above until no further parameters can be
found. Then, in a next step, the obtained common model is pruned by
eliminating those paths which, because of the freeing up of paths at
later iterations, no longer are acceptable according to the Dj criterion.
This procedure is consistent with the steps in the individual-level
model search within LISREL (Jörekog and Sörbom, 1992).

GIMME identifies models on the individual level in a semi-
confirmatory manner. The search for the optimal model on the indi-
vidual level does not begin with the null (empty) model as for the
group. Rather, the first iteration estimates the structure of paths
found in the group search. Then, the automatic search procedure
within LISREL identifies iteratively which individual-specific param-
eter according to the MI would optimally improve the model. At the
final stage the nonsignificant paths in the subject-specific part of each
individual's model are removed (providing they do not exist in the
groupmodel) and the resulting GIMMEmodel is checked in a final con-
firmatory fit. In this manner, individual-level parameter estimates
are obtained for both the connections that were identified in the
group-level analysis as well as those that surfaced only for the indi-
vidual. The final model for each individual must meet the criteria
below on two of the following four fit indices which demonstrated
reliability in simulation studies (Brown, 2006): root mean square
error of approximation (RMSEA), non-normed fit index (NNFI), com-
parative fit index (CFI), and standardized root mean –square residual
(SRMR). For RMSEA, values less than .05 indicate an acceptable fit,
for SRMR values less than .05, and for NNFI and CFI values greater
than .95 indicate an excellent fit. Fig. 2 offers a schematic diagram of
the process. Thefinalmodel for each individual consists of a partial con-
nectivity map which is common for all individuals added to a partial
individual-specific connectivity map. Below, the ability for GIMME to
Fig. 2. Schematic diagram of GIMME approach for estimating unified SE
correctly identify the existence of a relation and the direction is eval-
uated across individuals exactly as in the Smith et al. (2011) paper.

Data and results

Homogenous data: Smith et al. (2011) simulation 2

The reader is referred to Smith et al. (2011) for details regarding
the simulation of the data set. In short, a block-design data set was
simulated using the DCM forward model (Friston et al., 2003) which
is based upon the nonlinear balloon model (Buxton et al., 1998). For
ease in comparison, we selected simulation set number two (out of
a possible 28 simulations) since it was deemed to be the most repre-
sentative of fMRI data by Smith et al. (2011) and was given the most
attention in the original paper. This data set used a structure con-
taining 10 nodes (ROIs) as seen in Fig. 3, with 10min of data at a TR
of 3s for a total of 200 observations (scans) for each of the 50 simulat-
ed participants.

None of the 28 effective connectivity methods (out of 38 methods
total) tested by Smith et al. (2011) did well in terms of recovering
both the presence of a connection and the directionality of a connec-
tion. Those that did well on one construct fared poorly on the other.
For instance, the lagged-based effective connectivity methods only
identified the existence of a connection about 20% of the time. The
Bayes net approaches did much better at identifying the presence of
a connection (~90%) but were unable to correctly identify the direc-
tionality of the connection above what would be expected by chance.
The method which performed best in terms of identifying the correct
direction of paths, Patel's τ, did so only 65% of the time but detected
only the presence of 20% of the true connections.

When the same data were fit to uSEM using GIMME, the parame-
ters were recovered excellently by all criteria, demonstrating that uti-
lizing information across individuals helps arrive at reliable estimates.
Since the final models for each individual are arrived at by obtaining
individual-level parameter estimates at each step of the iterative
search procedure, comparison of weights across individuals, much
like that in Smith et al. (2011), is warranted. The distribution of
t-scores for the true paths for each individual was substantially higher
than seen for false paths (Fig. 4). The distribution of the estimates for
false positives was around zero, which is what one would expect. This
pattern is different, and better, than that seen for the majority of ef-
fective connectivity methods evaluated by Smith et al. (p. 882;,
Ms and extended unified SEMs (uSEMS and euSEMS, respectively).

image of Fig.�2
pxm21
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Fig. 3. Connectivity map structure for the Smith et al. (2011) simulations.
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2011). It must be stressed that while a group structure is obtained for
arriving at a map which is common to the majority of individuals, pa-
rameter estimates are conducted on an individual level for both the
connections freed which are common to the group and those that
are unique for the individual. GIMME correctly identified 100% of
the true connections (at above the 95% of the distribution of false pos-
itive t-values, called c-sensitivity by Smith et al., 2011) which existed
in the model across all individual replications. This is the same rate
reported in Ramsey et al. (2011) for the same data (but using a recall
metric which does not consider false positives) and is higher than the
best approaches out of the 38 methods tested by Smith et al. (2011).
For the methods presented in Ramsey et al. (2011) and the present
paper, the added accuracy can in part be attributed to increasing the
sample size from one individual.

In addition to identifying the presence of a connection, uSEM
implemented via GIMME correctly identified the direction of the con-
temporaneous connections 90% of the time according to Smith et al.'s
(2011) criterion for direction sensitivity (d-accuracy). The d-accuracy
index indicates the mean percent of true connections for which the
true direction estimation was higher than that of the false direction.
Identifying directionality 90% of the time offers an improvement
upon the individual-level methods tested by Smith et al. (2011).
Using the criteria of direction recall (i.e., the number of correct direc-
tions recovered out of the total number in the simulated data and
used by Ramsey et al. (2011)) the average rate increased to 93%,
which is comparable to the ability of the best methods in Ramsey et
al. (2011) (91–96%). These findings again highlight the added benefit
of utilizing shared information across individuals when arriving at re-
liable map structures.

When uSEM was estimated for each individual without using the
GIMME algorithm, results were similar to the best effective connec-
tivity methods seen in Smith et al.'s (2011) and Ramsey et al.'s
(2011) approaches conducted on the individual level. Across individ-
uals, 90% of presence of relations were detected when uSEMwas used
on the individual level (using the c-sensitivity criteria that true posi-
tives must be above 95% of the distribution of false positives); this
Fig. 4. Violin plots of distributions of true and false paths.
nears the best approaches identified in Smith et al. (2011) which
were above 90% but do not appear to reach above 95%. On the individ-
ual level, the Ramsey et al. (2011) approach identified 85–92% of the
relations in the true model when examined in terms of presence re-
call, or the percentage of true effects recovered out of the total effects
used to simulate the data (using this criterion, the individual-level
uSEMs had 91% presence recall). In terms of directionality, uSEM
again performed similarly to its competitors with identification of di-
rectionality being no better than chance (50%) using the d-accuracy
criteria used by Smith et al. (2011). The methods in the Smith et al.
(2011) paper which were able to identify the existence of a relation
did equally poorly with an average identification of true direction
only 50% of the time. The individual-level methods in the Ramsey
et al. (2011) paper recovered the true direction only 40–42% of the
time. While recovery of the presence of connections seems to be re-
liable at the individual level using uSEM, increasing the sample size
appears to assist in identifying the true direction in homogeneous
data sets (see Appendix A for the results of solely individual-level
analysis and GIMME conducted with groups of 10, 25, and 50 with
replacement).

GIMME and other recent methods highlight the added utility of
using shared information across individuals. However, it does not
work for all group approaches. For this data set, the model obtained
on the concatenated series recovered only six of the eleven paths
(55%) used to create the data (with no false paths). Five of the paths
were in the correct direction (83% according to the criteria used in
Smith et al. (2011)). While this model obtained an excellent fit for the
concatenated series, when run on individuals themodel was not an ex-
cellent fit for any individual by any of the five fit indices used discussed
in the methods (see Table 1). Hence the group-derivedmodel obtained
by concatenating the series failed to describe the individuals comprising
the group despite being an excellent fit at the group level. This high-
lights the need for alternative algorithms for arriving at paths which
are common to the group.

The results obtained by GIMME for themajority of data sets simulat-
ed by Smith et al. (2011) are supplied in Appendix B. Overall, GIMMEex-
cellently recovered the parameters used to create the data. For 92% of
the connections across all individuals across the simulations, GIMME es-
timated the true connection weight as being above the 95%-ile of false
connections (i.e., c-sensitivity; Smith et al., 2011). This percentage was
brought down from closer to 100% because of GIMME's inability to reli-
ably recover connections when the TR was reduced to an (at this time)
unrealistic .25s. In the presence of such short temporal lags with biolog-
ical data, the autoregressive components estimated in the course of
model selection explained such a high degree of variance that few
other paths were opened for these simulations. When not considering
these two simulations, GIMME's performance (in terms of recovering
the existence of true paths) rises to 97%. Of note, GIMME identified the
existence of 100% of connections when the source of noise was outside
of the researchers' control, such as the case in which there are shared
input influencing ROI BOLD activity (simulations 8 and 9; versus 70%
in Smith et al. (2011) and 96–98% in Ramsey et al. (2011)) and when
there is only one neuronal input driving activity across ROIs (simulation
24; versus 50% in Smith et al. (2011) and 84% in Ramsey et al. (2011)).
Hence it appears that group approaches such as GIMME aid in picking
up signal from noise across multiple types of scenarios likely to occur
in functional MRI research. It should be noted that the Ramsey et al.
(2011) metric reported here (adjacency recall) differs from the
c-sensitivity index used by Smith et al. (2011) and in Appendix B for
the present paper and may yield higher recovery rates because it does
not require that true relations recovered be higher than false ones
(false connections are considered in the Ramsey et al. (2011) precision
metric, which does not assess the proportion of paths in the true
model that were recovered and is thus not appropriate to compare
with c-sensitivity). Correctly identifying directionality varied more
across the simulations. In cases with very short sessions (minutes=
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Table 1
Average fit indices across varied analytic approaches. “Individual” indicates that analysis
was solely conducted on the individual-level. “GIMME (##)” indicates the entire
GIMME algorithm was used to arrive at individual-level estimates with the ## denoting
thenumber of individuals used to arrive at a common structure. “Concat.”=concatenated;
the line for “1” contains the fit indices for when the structure found from the concatenated
series was applied to each individual. The line for 50 displays the fit indices for the
concatenated series.

Analysis Chi DF CFI NNFI SRMR RMSEA

Homogeneity:
Smith et al. (2011)
sim. 2

Individual 128.3 120 0.99 0.99 0.05 0.01
GIMME
(10)

128.6 121 0.99 0.99 0.05 0.01

GIMME
(25)

127.2 121 0.99 0.99 0.05 0.01

GIMME
(50)

141.2 124 0.98 0.97 0.05 0.05

Concat. 1 250.8 129 0.88 0.82 0.07 0.06
50 91.0 129 1.00 1.00 0.05 0.00

Heterogeneity:
strength

Individual 42.1 26 0.99 0.98 0.04 0.04
GIMME
(10)

27.9 27 1.00 1.00 0.04 0.01

GIMME
(25)

33.1 26 0.99 0.99 0.04 0.02

GIMME
(50)

25.9 27 1.00 1.00 0.04 0.01

Concat. 1 33.1 26 0.99 0.99 0.04 0.02
50 0.7 27 1.00 1.00 0.01 0.00

Heterogeneity:
4 subgroups

Individual 59.0 27 0.99 0.98 0.04 0.05
GIMME
(10)

36.0 27 0.99 0.99 0.03 0.02

GIMME
(25)

40.0 28 0.99 0.99 0.03 0.03

GIMME
(50)

37.4 28 0.99 0.99 0.03 0.02

GIMME
(100)

43.1 28 0.99 0.99 0.03 0.03

Concat. 1 295.4 28 0.85 0.78 0.08 0.19
50 66.9 29 0.97 0.96 0.07 0.08

Heterogeneity:
random

Individual 128.0 60 0.98 0.96 0.03 0.06
GIMME
(10)

99.0 60 1.00 1.00 0.03 0.04

GIMME
(25)

102.7 59 0.99 0.97 0.03 0.04

GIMME
(50)

111.6 60 0.98 0.95 0.02 0.04

Concat. 1 254.5 61 0.09 0.04 0.92 0.87
50 16.0 61 1.00 1.00 0.00 0.01

315K.M. Gates, P.CM. Molenaar / NeuroImage 63 (2012) 310–319
2.5min, TRs=3s), GIMME had a more difficult time recovering the di-
rection of the effect. Finally, at the present time50 ROIs (as in simulation
4) is too computationally taxing for Lisrel since it results in a 100×100
covariance matrix of lagged and contemporaneous relations; analysis
of this simulated data thus could not be completed with GIMME,
which calls upon Lisrel for model estimation.

Smith et al. (2011) found lagged-based methods to be particularly
poor in terms of recovering both the presence and direction of paths.
That the uSEM, which contains in it lagged effects, performed so well
here may at first glance seem to contradict these findings. On the con-
trary, the work presented here further supports Smith et al.'s (2011)
findings that contemporaneous models best capture the relations.
Prior work has demonstrated that when there are effects which occur
at a finer temporal time scale than one TR (i.e., a lag of one in most
fMRI analysis), lagged-based methods fail to reliably recover these
effects if they do not also include contemporaneous effects (Gates et
al., 2010; Kim et al., 2007). Similarly, and most relevant to the present
work, if contemporaneous effects are estimated and lagged effects
which exist are not included, phantom paths will surface (Gates et al.,
2010). Since fMRI data are biological and thus contain, likemost biolog-
ical phenomena, autoregressive components, it improves the reliability
ofmodel estimation to include the lagged and contemporaneous effects.
Much like the Smith et al. (2011) findings, the relations among ROIs
(after controlling for autoregressive effectswhich surfaced in the search
for all ROIs) were contemporaneous. The lagged effects are used to en-
sure reliable estimation of the contemporaneous effects of interest.

Heterogeneous data sets

Three data sets were generated to demonstrate the ability of
GIMME to recover connections from differing types of heterogeneity.
The first attends to the condition of varying parameter weights across
individuals that have identical underlying connectivity models. The
latter two data sets demonstrate GIMME's ability to recover connec-
tions that may be missed when using the standard approach of
concatenating across individuals for group model discovery. Specifi-
cally, the second dataset contains connectivity maps that differ sys-
tematically across four equally sized subgroups but share some
common characteristics. This approach is informed by one study
which identified four subgroups from a sample (n=79) of individual
statistical parametric maps (Kherif et al., 2009). This may be a best-case
scenario of heterogeneity; what might be equally likely is that some
elements of a connectivity map exist for most individuals in the group
while other combinations of elements are entirely unique to the
individuals. Evidence exists for processes that exhibit this high degree
of seemingly random heterogeneity exists (e.g., Hillary et al., 2011;
Miller and Van Horn, 2007).

Since GIMME estimates connectivity maps from an SEM frame-
work, data sets were simulated using generative approaches similar
to those seen elsewhere in fMRI literature examining SEM reliability
(e.g., Penny et al., 2004). From simple algebraic substitution, Eq. (1)
above may be rewritten in the following manner to generate data
for one individual with a model containing a lag of one scan:

η tð Þ ¼ I−Að Þ−1 Φη t−1ð Þ þ∑1
j¼0γju t−1ð Þ þ τ1η t−1ð Þu t−1ð Þ þ ζ tð Þ

� �
;

ð4Þ

where ζ(t) are zero mean Gaussian innovations with unit variance
and are used to start the sequence and removed prior to analysis.
Time series of length 200 observations (e.g., scans) were created for
each individual in the sets to follow. The weights used to generate
the data differ by individual and by simulation set and will be provid-
ed below. The cutoff for Dj , or proportion of individuals whose model
a candidate path must improve, was set at .77 across all sets in accor-
dance with the probability of detection findings in the Smith et al.
(2011) paper.

Heterogeneous data: varying connection strength
Variation in connection strengths constitutes the most basic level

of heterogeneity that may exist across individual connectivity maps.
The first set of simulated heterogeneous data presented here contains
a set of 50 replications, which may be thought as multiple individuals
or multiple sessions for one individual, that contain identical struc-
tures of connectivity (see Fig. 5), and were generated to emulate
data from resting state conditions with no experimentally manipulat-
ed stimuli. The weights of connections in the contemporaneous paths
(i.e., parameters in the A matrix) were drawn randomly for each pa-
rameter for each person from a normal distribution with mean .6
and standard deviation .3. The autoregressive components (i.e., the
diagonal of the Φ matrix) were held constant at a weight of .5 across
all connections for all individuals.

Using uSEM, GIMME recovered all of the connections used to sim-
ulate the data across all individuals. Importantly, the estimates relat-
ed to the true weights used to create the series. The correlation
between the simulated parameters and those recovered using
GIMME was r=.759 (pb .001). The autoregressive components were
significant across all individuals. For elements in the A matrix, the es-
timates for ROI 3 regressed on ROI 2, ROI 4 regressed on ROI 3, and
ROI 2 regressed on ROI 5 were significant for 88%, 92%, and 92% of
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the individuals, respectively. For this set of data, using shared infor-
mation across individuals to arrive at some paths that are common
to the group improved recovery rates from those obtained when
only individual-level analysis is conducted. Still, with as few as 10 in-
dividuals the recovery of the presence (97%) and direction (95%) was
in acceptable ranges (see Appendix A). As one might expect, the
concatenated data series recovered true structure of the model.
Heterogeneous data: four subgroups
The second set of data contained four subgroups comprised of 25

individuals (for a total of 100 individuals) who shared some connec-
tions in common but differed by a pair of two nonshared elements. All
of the beta weights were simulated to equal .70. Fig. 6 displays the re-
sults from GIMME as well as the concatenated series. Although this
set of data contained clear subgroups, analysis was conducted in an
entirely data-driven manner and without prior information of sub-
group identification. As above, GIMME first identified connections
that existed for the group. Next, the search for individual-level
paths identified paths which exist on the individual level. Finally, con-
firmatory models were run to estimate parameter weights for the
group and individual paths simultaneously. GIMME recovered 99%
of the group and individual connections with no false positives, and
again recovery of estimates was improved by using group analysis
(Appendix A). By allowing for individual-level paths to surface,
meaningful differences in connectivity structures may emerge that
will aid in subgroup identification.

When uSEM was applied to the concatenated series, the resulting
model described none of the individuals that comprised the group. In-
deed, the connection between ROI 2 and 3 was recovered; however,
the directionality was wrong in the contemporaneous effect and the
temporal relation was misidentified. Additionally, none of the differ-
ences which exist across individuals, which may be meaningful, can
be captured by this method. When this model structure was applied
to each of the individuals, the model did not fit any of the data excel-
lently by any fit index.
Fig. 5. Simulated data network and results for the “varying connection strength” simu-
lated data. Both the GIMME and concatenated approaches recovered all of the param-
eters. Solid lines denote contemporaneous connections and dashed lines indicate
lagged connections of 1 time point (i.e., scan).
Heterogeneous data: random maps
GIMME was next applied to data sets simulated to emulate data

obtained during a task implemented with an event-related design
when heterogeneity exists in brain connections across individuals
across all on and off conditions as well as specifically related to that
task. A vector of onset times, which may reflect experimental manip-
ulation, was created such that at each time point there was a .3
chance of the experimental manipulation occurring independent of
other time points. This onset vector was convolved with the gamma
hemodynamic response function described in Sarty (2007). Series of
length 200 TRs (T=200) of length 2s were simulated for a pattern
of relations among 5 nodes (ROIs) for 50 replications (or partici-
pants). A group structure, or set of paths common to the majority,
consisting of five lagged effects (of weight=.70) and two contempora-
neous effects among ROIs (60) as well as a direct (.60) and bilinear ex-
perimental manipulation effect on the relation between 2 ROIs (−.60)
was used as a base network (see Fig. 7).

To emulate the heterogeneity found in empirical network maps
(which may indicate unique processing patterns), additional paths
were randomly opened for each replication. Each path aside from
those in the common structure were opened with a probability of
.02 (1/50) independent of other paths which may be opened for the
individual. Twenty-nine of the 50 replications had paths in addition
to those found in the common structure. The inclusion of a vector of
onset times and bilinear effects made the euSEM an optimal modeling
method. The time-varying (i.e., bilinear) effect of ROI 4 on ROI 5 as a
function of the onset vector representing experimental manipulation
is displayed in Fig. 1. Additional bilinear effects that are freed at the
individual level could be very important for researchers who are in-
teresting in identifying relations among ROIs that change in the pres-
ence of an experimental manipulation.

Results paralleled those seen in the previous examples. First, all of
the paths simulated at the group level were recovered in step one of
the GIMME procedure. That is, all 9 of the paths used to create all of
the individuals' data were recovered in terms of the presence and di-
rection. Furthermore, no false paths surfaced in the group structure.
Thus in the face of heterogeneous data, GIMME appropriately picked
out signal from noise to obtain a group structure of paths which
truly describes the individuals. Starting with the group structure as
a base, individual paths were opened that improved model fit for
those individuals. GIMME correctly identified the presence and direc-
tion of 98% of the paths across individuals. When looking at the direc-
tionality of the 98% of connections detected, 100% of the time the
correct direction was identified. Similar to result from the “varying
parameter strength” condition, conducting euSEM on the concatenat-
ed data recovered the true structure. However, when this structure
was applied to each of the individuals very poor fits resulted (see
Table 1). This underscores that the heterogeneity in the individuals
was great enough such that the group-level connections failed to de-
scribe the individuals comprising the group.
Conclusions

GIMME performed excellently in terms of identifying the presence
of connections in groups when using the data simulated by Smith et
al. (2011), which are homogeneous across replications, as well as
arriving at reliable group and individual estimates using in-house
data representing heterogeneous processes across individuals. Two
aspects of GIMME set it apart from most connectivity methods to
date. One, GIMME allows for inclusion of event-related data by
implementing euSEM. Simulations contained herein demonstrate
the efficacy in detecting direct experimental and bilinear effects at the
group and individual levels. These effects help researchers understand
how a relationship between two given ROIs changes, or appears, in
the presence of experimental manipulation. Few alternatives for
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Fig. 6. Simulated data network and results for the “four subgroup” simulated data. GIMME obtained no false positives. Solid lines denote contemporaneous connections and dashed
lines indicate lagged connections of 1 time point (i.e., scan).
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arriving at data-driven models which include the experimental manip-
ulations of event-related designs exist.

Two, GIMME accommodates heterogeneity in samples by arriving
at reliable estimates at the individual-level. By first acquiring a group
model, GIMME capitalizes on shared information to pick signal out
from noise. Data presented herein demonstrate that the standard
technique of concatenating for SEM analysis yields spurious results
when heterogeneity is present or arrives at models which fail to de-
scribe the individuals comprising the group. Having arrived at paths
which are common across individuals, individual-level connections
may open as needed to obtain excellent model fits. The second step
guarantees that connections unique and important to individuals'
processing will surface. The degree to which the group-derived map
differs from the individual-level maps depends on the degree of
true heterogeneity in the sample. In the case of the Smith et al.
(2011) data and the data sets with homogenous structures used in
Heterogeneous data: varying connection strength, the group level
model contained all of the paths that were ultimately estimated on
the individual level. If there is much heterogeneity, as in the four sub-
group and random heterogeneity examples used in Heterogeneous
data: four subgroups and Heterogeneous data: random maps, the
Fig. 7. Simulated data network and results for the “random heterogeneity” simulated
data. GIMME recovered most of the parameters (see Table 1) with few false positives.
Concatenating the data recovered all of the paths that are common across all individ-
uals with no false positives. Solid lines denote contemporaneous connections, dashed
lines indicate lagged connections of 1 time point (i.e., scan), arrow-heads indicate ef-
fects among ROIs, round heads indicate direct influence of experimental stimuli, and
square heads indicate bilinear effects of the relationship between ROIs in the presence
of experimental stimuli. Multiple types of effects (e.g., bilinear and direct) may occur
between two ROIs. Line width corresponds to frequency.
group model may be sparse by comparison to the individual-level
models. Since this method obtains reliable results, researchers can
be confident that any variation in structure occurring on the individ-
ual level is true. Obtaining reliable individual-level connectivity struc-
tures and estimates is a prerequisite for analysis into heterogeneity of
brain processes across individuals.

The ability to accommodate individual-level differences in model
structure while arriving at reliable group inferences thus allows re-
searchers to ask new questions. For instance, one might ask if devia-
tion from the group model relates meaningfully to behavioral,
psychological, or genetic indices. Another line of questioning might
be, in a sample of individuals with similar behaviors or diagnostic cat-
egories (e.g., healthy controls or patients with Alzheimers), how
much deviation in brain processing might one expect for specific
tasks? Within this line of questioning, researchers interested in the
etiology and treatment of illnesses may wish to identify differences
in brain connectivity within a diagnostic group to arrive at better,
person-specific treatment strategies (Seghier et al., 2010). Increasing-
ly, researchers are acknowledging that multiple networks may be
necessary to describe even normative functioning, and group-level
results for identifying abnormal processing may miss important dif-
ferences in connectivity patterns that relate meaningfully to a deficit
for the individual. GIMME enables investigation into these questions.
Finding the answers may lead to an increase in the application to fMRI
analysis to real-world problems, such as identifying subgroups of
ADHD patients which may respond to specific medication or indica-
tions of recovery in the case of traumatic brain injury. It is thus a sci-
entific imperative that statistical methods which yield reliable results
are used.

The need for a program which allows for individual nuances, which
may be meaningful, is large. Future extensions of algorithms which
allow for individual nuances may be used to identify subgroups. One
drawback of GIMME's implementation, which it shares with most other
approaches, is that it assumes a similar hemodynamic response function
across regions. While currently implemented via quasi-maximum likeli-
hood, raw data maximum likelihood implementations will open up the
possibility for parameters of the hemodynamic response to be esti-
mated for each region separately. Another improvement would be
to allow for correlations between ROIs. Currently, bidirectional rela-
tions must be uncovered by having two directed paths between
ROIs. Having demonstrated excellent recovery of true connections
and their directions, GIMME is well-primed to fill needs of fMRI
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Simulation #
Nodes

Minutes TRs Noise
(%)

HRF
std.
dev.

Other C-
sensitivity

D-
accuracy

1 5 10 3 1 0.5 100 64
2 10 10 3 1 0.5 100 90
3 15 10 3 1 0.5 100 85
5 5 60 3 1 0.5 100 70
6 10 60 3 1 0.5 100 73
7 5 250 3 1 0.5 100 81
8 5 10 3 1 0.5 Shared

inputs
100 77

9 5 250 3 1 0.5 Shared
inputs

100 80

10 5 10 3 1 0.5 Global
mean
confound

100 92

11 10 10 3 1 0.5 Bad ROIs 85 80
12 10 10 3 1 0.5 Bad ROIs 100 72
13 5 10 3 1 0.5 Backwards

connections
61 70

14 5 10 3 0.1 0.5 Cyclic
connections

100 98

15 5 10 3 1 0.5 Stronger
connections

100 94

16 5 10 3 1 0.5 More 94 93
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researchers wishing to arrive at valid effective connectivity maps for
groups and individuals.
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Appendix A

Direction precision (# of true directions in output/# directions in
output); presence precision (# of true connections in output/# con-
nections in output); direction recall (# of true directions in output/#
of true directions in simulation); and presence recall (# of true con-
nections in output/# connections in simulation) are presented below
for varying sample sizes. The table presents averages from subsam-
ples drawn with replacement in sizes of 10, 25, 50, and 100 (where
applicable) and analyzed with the GIMME algorithm as denoted by
“GIMME (##)”. “Individual” indicates that the analyses were con-
ducted solely on the individual-level.
Precision Recall

Direction Presence Direction Presence

Homogeneity:
Smith et al. (2011)
sim. 2

Individual 43% 85% 46% 91%
GIMME (10) 83% 89% 94% 99%
GIMME (25) 88% 91% 94% 97%
GIMME (50) 85% 91% 93% 100%

Heterogeneity:
strength

Individual 65% 78% 68% 85%
GIMME (10) 92% 95% 94% 97%
GIMME (25) 85% 91% 91% 97%
GIMME (50) 99% 99% 100% 100%

Heterogeneity:
4 subgroups

Individual 77% 87% 83% 95%
GIMME (10) 92% 92% 99% 99%
GIMME (25) 96% 96% 99% 99%
GIMME (50) 96% 96% 99% 99%
GIMME
(100)

96% 96% 99% 99%

Heterogeneity:
random

Individual 91% 92% 92% 93%
GIMME (10) 90% 90% 97% 97%
GIMME (25) 91% 91% 97% 97%
GIMME (50) 98% 98% 98% 98%

connections
17 10 10 3 1 0.5 100 77
18 5 10 3 0.1 0 100 82
19 5 10 0.25 0.1 0.5 Neural lag=

100ms
35 83

20 5 10 0.25 1 0 Neural lag=
100ms

27 88

21 5 10 3 0.1 0.5 Varying
connection
strengths

96 74

22 5 10 3 1 0.5 Nonstationary
connection
strengths

89 82

23 5 10 3 1 0.5 Stationary
connection
strengths

100 96

24 5 10 3 0.1 0.5 Only one
strong
external
input

100 98

25 5 5 3 1 0.5 100 46
26 5 2.5 3 1 0.5 92 51
27 5 2.5 3 0.1 0.5 98 33
28 5 5 3 0.1 0.5 100 74
Appendix B

Results from full Smith et al. (2011) data sets. There reader is
õreferred to Smith et al. (2011) for a full description of the data sim-
ulation process or Homogenous data: Smith et al. (2011) simulation 2
above for a brief overview. Simulations numbered 4 and 16 were
õremoved because the former was too computationally taxing (with
nodes=50) and the latter simulation did not have information
õregarding the additional connections public. In the table below, the
“simulation” column refers to the simulation number assigned to
the datasets in Smith et al. (2011). The “#Nodes” refers to the number
of ROIs; “Minutes” the length of the session in minutes; “Noise (%)” the
percent of noise added; “HRF Std. Dev.” indicates the degree to which
the hemodynamic response function delay parameters varied across
simulations; “Other” lists additional conditions modeled in the dataset;
“C-sensitivity” reports the percentage of individual replications from
the dataset that met Smith et al.'s (2011) criteria for recovering the
presence of a connection, defined as a connection whose weight is
above the 95%-ile of false connections; and “D-accuracy” indicates the
percentage of individual replications for which the direction recovered
during the GIMME analysis was greater in value than the weight of the
opposite direction (for those true positive connections identified).
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