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TEACHER’S CORNER

Automated Selection of Robust Individual-Level
Structural Equation Models for Time Series Data

Stephanie T. Lane and Kathleen M. Gates
The University of North Carolina at Chapel Hill

In order to analyze intensive longitudinal data collected across multiple individuals, researchers
frequently have to decide between aggregating all individuals or analyzing each individual
separately. This paper presents an R package, gimme, which allows for the automatic specifica-
tion of individual-level structural equation models that combine group-, subgroup-, and indivi-
dual-level information. This R package is a complement of the GIMME program currently
available via a combination of MATLAB and LISREL. By capitalizing on the flexibility of R
and the capabilities of the existing structural equation modeling package lavaan, gimme allows
for the automated specification and estimation of group-, subgroup-, and individual-level relations
in time series data from within a structural equation modeling framework. Applications include
daily diary data as well as functional magnetic resonance imaging data.

Keywords: structural equation modeling, R, time series

Across varied domains, researchers collect multivariate data for
each individual unit of study across numerous measurement
occasions. Frequently referred to as time series data (alterna-
tively, intensive longitudinal data), examples include psycho-
physiological processes studied using neuroimaging (Beltz
et al., 2013), daily diary studies (Shwinski, Smyth, Hofer, &
Stawski, 2006) and observational coding of social interactions
among dyads (Anzman-Frasca et al., 2013). A primary goal in
acquiring these data is to understand temporal processes. Within
the neuroimaging community, the process of interest is brain
functioning and connectivity, where relations among spatially
disparate regions across time offer insight into this phenomenon.
Similarly, in daily diary studies, the process of interest might be
the dynamics of psychological processes, such as emotion, over
time. Methods for analyzing these processes vary greatly, but
most have the same underlying goal: identifying the temporal
relations that best describe a process over time.

Using time series data affords researchers the ability to pose
different questions than those that could be answered with
cross-sectional designs. Indeed, analyzing data across time
often identifies different patterns of relations than when look-
ing at cross-sectional data (Molenaar, 2004). A key benefit of
utilizing time series data is the ability to investigate potential
individual differences in patterns of relations. Both theory
(Lamiell, 1981; Molenaar, 2008) and emerging results
(Anzman-Frasca et al., 2013; Fair, Bathula, Nikolas, & Nigg,
2012; Gates, Molenaar, Iyer, Nigg. & Fair, 2014) suggest that
individuals differ in many processes of interest to social scien-
tists. Taken together, understanding these temporal processes
on the individual level might assist social science researchers
in providing improved diagnostic tools; in turn, this under-
standing may aid in the development of individually tailored
prevention protocols and treatment programs.

Structural equation modeling (SEM) is a popular approach
for analyzing time series data, as it can be used to obtain
information regarding both lagged and contemporaneous effects
frequently found in time series data. Although SEM can be
applied at the individual level, two primary concerns preclude
researchers from doing so. The first is gathering a sufficient
number of observations across time. Should a sufficient number
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be obtained, a secondary concern is that noise will drive the
results in individual samples (MacCallum, Roznowski, &
Necowitz, 1992). In an attempt to detect signal from noise, the
current standard is to conduct group-level analysis by concate-
nating individual time series data; that is, each individual’s data
are pasted consecutively below the previous individual’s data to
arrive at one matrix. Here, the length of the matrix is the total
number of observations across time (Ti, for each individual i)
times the number of individuals (sample size N), where the
number of columns is equal to the number of variables, p.
Analysis that enables insight into the relations of multiple vari-
ables, such as SEM, is then conducted on these aggregated data
to arrive at a nomothetic, or group-level, model that can then be
applied to the population.

At its best, aggregating across individuals in this way might
aid the researcher in detecting signal from noise. However,
combining data sets assumes homogeneity in the relations
among variables that explain the processes across individuals.
That is, it requires that the data satisfy a strong assumption that
one process is sufficient to describe the individuals comprising
the sample. However, this assumption likely does not hold in
many areas of study within the social sciences.

Thus, both individual-level and group-level approaches are
associated with limitations, and it is a daunting task for the
researcher to decide whether to analyze each individual sepa-
rately or aggregate the individuals prior to model selection. This
issue motivated the original development of group iterative
multiple model estimation (GIMME), a toolbox available in
MATLAB that relies on two proprietary programs: MATLAB
(The MathWorks, 2010) and LISREL (Jöreskog & Sorbom,
2006), where MATLAB facilitates the user interface and
LISREL provides model estimation and optimization. By look-
ing across individuals for patterns of relations among variables at
both the group and individual level, GIMME has been found to
provide among the most reliable approaches available
(Mumford & Ramsey, 2014), particularly in the presence of
processes that are heterogeneous across individuals (Gates &
Molenaar, 2012).

Requiring the use of two proprietary programs impedes
usability for a number of reasons. First, due to licensing restric-
tions, LISREL cannot be placed on a server. Thus, researchers
are unable to utilize cluster computing resources while running
GIMME. Second, LISREL is only supported on Windows
systems; it is not supported on Linux-based systems.
Additionally, for researchers who do not use MATLAB or
LISREL in other contexts, purchasing these two programs for
the use of GIMMEmight be cost-prohibitive. Finally, updates in
LISREL often change the format and nature of the output, which
requires constant updating of the MATLAB shell that reads in
the output. Taken together, there exists a great need for one
publicly available, stand-alone program for users that can be
used on servers and on all platforms. We capitalize on pre-
viously shown equivalences in the lavaan and LISREL esti-
mates for SEM (Rosseel, 2012) to arrive at an R version of
GIMME that is flexible and does not require the user to purchase

any programs. The present project developed, extensively
tested, and packaged gimme (Lane, Gates, & Molenaar,
2014) for R. This package contains adaptations, improvements,
and extensions to the original GIMME MATLAB toolbox,
ensuring that the R package performs as well or better than the
previously evaluated version.

Importantly, the ability of the gimme package to accu-
rately recover group-, subgroup-, and individual-level paths
in the presence of heterogeneous data has been demon-
strated previously (Gates, Lane, Varangis, Giovanello, &
Guskiewicz, 2017; Gates & Molenaar, 2012). Our purpose
here is simply to demonstrate the usage of the package and
the navigation of the output.

SPECIFICATIONS OF MODEL FOR CURRENT
PROGRAM

gimme uses the SEM framework to (a) identify the struc-
ture of relations among variables of interest, and (b) esti-
mate the weights of these relations. To accommodate the
sequential dependence found in time series data, gimme
estimates the unified SEM (uSEM; also referred to as struc-
tural vector autoregression, or SVAR) to obtain relations
among variables across time (Chen et al., 2011; Gates,
Molenaar, Hillary, Ram, & Rovine, 2010; Kim, Zhu,
Chang, Bentler, & Ernst, 2007). The uSEM estimates both
lagged (up to a predefined order of Q) and contemporaneous
relations (zero order) simultaneously as follows:

ηt ¼ Aηt þ
XQ

q¼1

ϕqηt#q þ ζt (1)

where ηt; t ¼ 1; 2; :::; T contains the manifest p-variate time
series (where t ranges across the time-ordered sequence of
observations), A contains the ðp; pÞ-dimension matrix of
contemporaneous relations among variables (with zeros
along the diagonal), ϕq contains the ðp; pÞ-dimension matrix
of the associations among variables at a lag of q, and ζt
contains a p& 1 vector white noise process. The parameters
in A and ϕ are contained in the B matrix of standard SEM
software packages (including LISREL, Mplus [Múthen &
Múthen, 2012], and lavaan). GIMME and gimme currently
offer the option to have a lag of q ¼ 1. All paths where the
current time point would predict the previous time point are
set to zero; that is, all B paths that would predict ηt#1 are
constrained to zero (Gates et al., 2010). Traditionally, these
uSEM models are either applied separately for each indivi-
dual’s data or to data that have been aggregated across
individuals. To circumvent the issues that arise from either
approach, in a multistep process, gimme obtains a group-
level model using a process robust to outliers and hetero-
geneity. This structure is then used as a starting point for
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identifying relations that exist for the individual in an itera-
tive model search procedure. Previous work has demon-
strated that beginning model selection with group-level
relations greatly improves the recovery of individual-level
paths, alleviating the concern that individual model selec-
tion will be driven by noise (Gates & Molenaar, 2012).

The gimme package uses lavaan for the estimation of
structural equation models. gimme begins by estimating an
empty model (i.e., no estimated relations in the A or ϕ
submatrices of the B matrix) across each individual. At the
beginning, the researcher may specify whether or not to
begin estimation with the autoregressive (AR) paths freed
for estimation. The estimates of AR effects indicate the
degree to which a given variable at t # 1 predicts itself at
t; these effects are frequently found in time series data. In
the gimme package, researchers can also specify additional
paths they wish to have estimated. In this way, the model
search can be considered a semiconfirmatory model.

Modification indexes are then obtained for each indi-
vidual’s model. Modification indexes indicate the extent
to which the model would improve should the corre-
sponding element of the B matrix be freely estimated.
Because modification indexes are asymptotically χ2ð1Þ
distributed, we can conduct significance tests for each
element. Modification indexes corresponding to the diag-
onal of the A matrix are removed, as a variable cannot
predict itself in contemporaneous time. Similarly, paths
where a variable at t would predict a variable at t # 1 are
removed. Once the null model for each individual has
been estimated, gimme proceeds by counting which ele-
ment, if freed, would significantly (according to a
Bonferroni-corrected alpha level) improve model fit for
the greatest number of individuals. In the presence of a
tie, the element with the highest average modification
index across individuals is selected. If this path is sig-
nificant for ≥75% of individuals, gimme adds this path to
every individual’s model and continues searching until no
path meets this criteria. The cutoff value of >75% is
typically found in neuroimaging research (van den
Heuvel & Sporns, 2011), and it provides an appropriate
heuristic for what constitutes the “majority.” However,
this cutoff value could be modified by the user.
Importantly, if no paths exist that meet this criteria, then
none will be chosen during the group-level search proce-
dure. Thus, no group-level model will be forced onto data
so heterogeneous that a group-level path would fail to
describe individuals comprising the sample (details of this
procedure can be found in Gates & Molenaar, 2012).

Once an appropriate group-level model is established,
paths that are no longer significant for the majority are pruned
in a manner similar to the iterative search procedure.
Specifically, the z values associated with each path are eval-
uated, and if ≤75% of paths are significant, that path will be
pruned. In the case of a tie, the path with the lowest average z

value will be pruned. Once no paths fit this criteria, the group-
level model is established. In this manner, gimme arrives at a
group-level model that contains only paths that are significant
for the majority of individuals comprising the sample that
cannot be swayed by outlier cases. Although all individuals
have these paths, the weights are allowed to vary across
individuals at all steps of the procedure.

It might be the case that a researcher anticipates not only
group- and individual-level paths, but also subgroup-level
paths. In this case, gimme allows for the specification of
subgroup = TRUE, which utilizes information following
the group-level search using a robust community detection
method known as Walktrap (Pons & Latapy, 2006). The
similarity or adjacency matrix that is used to cluster indivi-
duals contains information regarding how similar each pair
of individuals is in their temporal models. Specifically, each
individual’s group-level path and expected parameter
change (EPC) estimates are used. EPCs are related to mod-
ification indexes but can take both positive and negative
values and are normally distributed. gimme obtains a count
for each pair of individuals i and j that reflects the number of
significant B and EPC estimates that they both have and are
in the same direction (i.e., positive or negative). This N & N
adjacency matrix contains counts that indicate the number
of temporal effects that the individuals have in common.
Walktrap then returns a vector indicating the subgroup (or
community) membership of each individual. gimme then
proceeds by searching for paths specific to each subgroup in
a manner similar to the group-level search. Once subgroup-
level paths are added, a similar pruning procedure is then
conducted. Finally, once this search is done, a final search is
done to ensure that all group-level paths are still significant
for the majority of individuals.

Finally, using any group-level and potentially subgroup-
level paths as the starting model, individual-level models are
then estimated. Modification indexes are again obtained, and
the element with the highest modification index exceeding
χ2ð1Þ;α¼:01 is freely estimated. The model search for the
individual is terminated when an excellent fitting model is
obtained as indexed by two of four fit indexes: root mean
square error of approximation (RMSEA; Steiger, 1990), non-
normed fit index (NNFI; Bentler & Bonnett, 1980) compara-
tive fit index (CFI; Bentler, 1990) and standardized root
meansquare residual (SRMR; Bentler, 1995). For the
RMSEA and SRMR, values less than .05 indicate an excel-
lent fit; for the CFI and NNFI, values greater than .95 indicate
an excellent fit (Brown. 2006). This approach is similar to the
manner in which researchers identify the appropriate number
of factors within the SEM framework, and it performed
optimally in the original GIMME program. Formally, the
final model obtained by gimme can be written as follows:

ηt;i ¼ ðAi þ Ag
i þ As

i Þηt;i þ ðϕ1;i þ ϕg1;i þ ϕs1;iÞηt#1;i þ ζt;i
(2)
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where, as before, ηt indicates the manifest p-variate time
series, A contains the contemporaneous paths, ϕ1 contains
the lag-1 paths, and ζt contains the errors in prediction. The
subscript i indicates that the parameters in the matrix are
unique estimates for individual i for i through N individuals.
Matrices with superscript g contain estimates for paths in
the group-level structure; that is, for each open path in the g
superscript matrices, a path estimate exists for each indivi-
dual. Matrices with superscript s contain paths for the sub-
group-level structure. Please note that the matrices with s
superscripts are not included should the researcher specify
subgroup = FALSE. The matrices without the superscript
g or s contain estimates for paths that exist for that indivi-
dual and are not contained in the group structure. In this
way, it is clear that there are two (or potentially three)
submodels: one group-level structure, one subgroup-level
structure, and one individual-level structure, all of which
are estimated at the individual level (Figure 1).

PROGRAM

Considerations for Use

There are a number of considerations for use. First, gimme
requires that all individuals have the same number of vari-
ables, and that these variables are in the same order in the
data file or matrix containing each individual’s data. The
GIMME algorithm has been evaluated with as few as 5
variables and as many as 15 variables, and it has been
shown to perform well in this range when recovering data-
generating effects. However, as few as 3 variables can be
used. An upper limit of no more than 20 variables is

suggested given the increase in computation time.
Importantly, we recommend at least 60 time points for
researchers interested in using gimme, although more
might be beneficial with a large number of variables
(Lane, Gates, Pike, Beltz & Wright, 2016).

Additionally, gimme currently does not allow for a lag
of greater than 1 to be estimated given the use of a block-
Toeplitz structure. That is, the addition of additional lagged
variables beyond an order of 1 would quickly become
computationally burdensome. Missing data may be handled
by gimme provided that the mechanism of missingness is
random or completely at random. Additionally, it is recom-
mended that the data were measured at equal intervals, an
assumption that might be violated with certain forms of
ecological momentary assessment data. Finally, gimme

does not currently allow for data with time-varying effects,
therefore, it might not be suitable for situations where
effects are thought to vary with respect to time.

Instructions for Use

The gimme package has one major function, gimmeSEM(),
that provides many options to the researcher. This function is
used to analyze data using the algorithm described earlier.
The program begins by accessing data files stored in a direc-
tory created by the user, or by accessing data already stored as
named matrices or data frames within a list (explained in
detail later) in the R environment.

Regardless of which option is used, there should exist a
data set for each individual containing a Ti & p matrix,
where the columns represent variables and the rows repre-
sent time. Here, we distinguish Ti because the number of

FIGURE 1 Model search procedure.
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time points can vary across individuals. The number of
variables, p, however, cannot vary over individuals. Before
analysis begins, the gimmeSEM() function accesses each
data file and creates p additional variables to represent the
variable at T # 1.

The user begins by installing the gimme package and
loading the gimme library using the following code:

To apply the gimme algorithm to a set of time series data
across N individuals, a call to gimme could be structured as:

The arguments within this function include data, the
path to the directory of data files or the name of the list
containing all data matrices; out, the path to the directory
where results will be stored; sep, the spacing of the data
files using standard R convention (“ for space-delimited,
“\t” for tab-delimited, and “,” for comma-delimited);
header, a logical indicating whether the data files have
a header row; ar, a logical indicating whether or not
model search should begin with AR paths open; plot, a
logical indicating whether the user desires automatically
generated plots from qgraph (Epskamp, Cramer, Waldorp,
Schmittmann, & Borsboom, 2012) depicting relations
among variables; subgroup, a logical indicating whether
the user would like the model search to include subgroup-
level paths; and paths, an optional argument where the
user can specify lavaan-style syntax with paths with which
to begin model estimation. All logicals preceding indicate
the default values. Thus, where the raw data files are stored
in the directory provided for the data argument, the results
will be stored in the directory specified by the out argu-
ment, the files are comma delimited and contain no header
row, and model estimation will begin with autoregressive
paths open. By default, plots (plot = TRUE), autoregres-
sive paths are estimated (ar = TRUE), subgroups are not
obtained (subgroup = FALSE), and no additional paths
are specified with which to begin model estimation
(paths = NULL).

To clarify the structure of the data directory, we present
an example of the contents using:

Here, we see the file path for the first six files in the
data directory. All of these files contain comma-sepa-
rated values (.csv), although text files containing values
separated by spaces, tabs, or commas might also be pro-
vided. Each file contains an individual’s time series data
with length Ti and p variables.

We can view the structure of an individual’s data file
using:

Here, we see the first six lines of this individual’s data
set. Alternatively, the user might bypass the need for the
sep and header arguments by providing a list of Ti & p
data matrices directly to the data argument. For clarifi-
cation, a list is defined as a “generic vector containing
other objects.” By “list with named members,” we mean
that each matrix within the list is named (e.g., a subject
ID). Thus, a list can be provided, which is a vector
containing named matrices or data frames for each indi-
vidual. This use of the data argument could be useful
for users who already have all individuals’ time series
contained in a single list. If simData is the name of the
list containing the named data frame for each individual,
we can first see the named elements of the list using

which yields the ordered list of names for the simData
object, as shown here:

Thus, we may view the data for individual group_1_1
using simData[[1]]:

Here, we see the first six lines of the named data frame for
individual group_1_1. From this demonstration, we see that
there is a data file for each individual containing a Ti & p time
series (only the first six time points are presented here for
illustrative purposes). If an output directory is specified by the
user, multiple output files are produced. For each run of
gimmeSEM, two subdirectories are produced, individual

1 install.packages(“gimme”, dependencies = TRUE)

2 library(gimme)

1 gimmeSEM(data = “C:/example1”,

2 out = “C:/example1_out”,

3 sep = “,”,

4 header = FALSE,

5 ar = TRUE,

6 plot = TRUE,

7 subgroup = FALSE,

8 paths = NULL)

1 head(list.files(“C:/example1”, full.names = TRUE))

1 [1] “C:/example1/group_1_1.csv” “C:/example1/
group_1_10.csv”

2 [3] “C:/example1/group_1_11.csv” “C:/example1/
group_1_12.csv”

3 [5] “C:/example1/group_1_2.csv” “C:/example1/
group_1_3.csv”

1 head(read.csv(“C:/example1/group_1_1.csv”))
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and subgroup (if subgroup = TRUE is selected). Within
the individual directory, three output files exist for each indivi-
dual data file: a matrix containing B values for both contem-
poraneous and lagged relations, a matrix containing standard
errors, and a plot summarizing the individual-level paths (if
plot = TRUE). In this graphic, blue represents negative B
values, red represents positive B weights, and the thickness of
the line represents the magnitude of the edge weight. All other
files are placed in the main output directory. Table 1 describes
the output files and location.

Models are estimated using full information maximum like-
lihood (FIML). Consequently, we take advantage of the ability
of FIML to handle missing data. Although the assumption of
row-wise independence is violated in this instance, previous
research has indicated that these quasi-maximum likelihood
estimates approximate maximum likelihood estimates for AR
processes (Hamaker, Dolan, &Molenaar, 2002). The syntax for
each individual is iteratively updated on the addition and prun-
ing of new paths using the aforementioned process, and

gimmeSEM() proceeds by estimating group-, (potentially)
subgroup-, and individual-level paths. Output is then directed
to an (optional) directory specified by the user, and the user is
notified on the completion of a successful search.

Two complementary functions exist that enable the user to
compare results from gimmeSEM to current standard
approaches for arriving at individual-level models and
group-level models. First, indSEM() identifies the model
for each individual independently and does not use shared
information across individuals to inform model selection. As
noted earlier, one criticism of this approach is that results
might be driven by noise (Gates & Molenaar, 2012). No
group-level model is generated. An additional function,
aggSEM(), concatenates all of the individual data files to
arrive at one data set. It then runs the indSEM() procedure
on this data set. This procedure results in a group model and
no individual-level paths; thus, no individual-level output or
graphs (if plot = TRUE) are provided. A summary of the
available functions is provided in Table 2.

1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

2 –2.540 1.707 -3.374 -0.130 -1.047 2.164 -1.421 -3.205 0.130 -1.634

3 -1.434 4.197 -1.865 3.018 -1.879 2.461 -0.553 -1.002 1.876 -1.481

4 -1.180 5.302 0.592 5.310 -1.492 2.798 1.002 -0.416 2.179 0.053

5 0.881 3.797 0.088 3.211 0.085 1.415 -0.810 -2.463 4.044 -1.412

6 -0.567 2.682 -0.731 1.951 -1.071 1.366 -1.417 -2.827 3.840 -2.589

7-3.587 2.227 0.413 5.580 -2.989 1.985 2.593 -2.036 0.250 -1.177

1 [1] “group_1_1” “group_1_10” “group_1_11” “group_1_12”

2 [5] “group_1_2” “group_1_3” “group_1_4” “group_1_5”

3 [9] “group_1_6” “group_1_7” “group_1_8” “group_1_9”

4 [13] “group_2_13” “group_2_14” “group_2_15” “group_2_16”

5 [17] “group_2_17” “group_2_18” “group_2_19” “group_2_20”

6 [21] “group_2_21” “group_2_22” “group_2_23” “group_2_24”

7 [25] “group_2_25”

1 names(simData)

1 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

2 –2.540 1.707 -3.374 -0.130 -1.047 2.164 -1.421 -3.205 0.130 -1.634

3 -1.434 4.197 -1.865 3.018 -1.879 2.461 -0.553 -1.002 1.876 -1.481

4 -1.180 5.302 0.592 5.310 -1.492 2.798 1.002 -0.416 2.179 0.053

5 0.881 3.797 0.088 3.211 0.085 1.415 -0.810 -2.463 4.044 -1.412

6 -0.567 2.682 -0.731 1.951 -1.071 1.366 -1.417 -2.827 3.840 -2.589

7 -3.587 2.227 0.413 5.580 -2.989 1.985 2.593 -2.036 0.250 -1.177
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In the model search, the user can declare certain paths
that are expected to exist that can be added at the start of
estimation. For example, a paths argument for data contain-
ing no header row could be defined as shown next, where
V2 indicates the variable located at column 2 in the data file.
These paths represent that V4 predicts V2 contempora-
neously, V3 at t # 1 predicts V6 at t, and that model estima-
tion should begin with these paths open for all individuals.
Example code is shown here where two confirmatory paths
are specified and data are read in from a list:

Alternatively, gimmeSEM() can be run by launching
the graphical user interface (GUI) provided with the
gimme package. To launch the GUI, simply type

gimmeInteractive() into the R console. The GUI
can be viewed in Figure 2.

SIMULATED DATA EXAMPLE

Here, we simulate data to demonstrate the functionality of
gimme. These data are generated to mimic characteristics of
functional MRI (FMRI) data, which are frequently charac-
terized by large AR effects, multiple paths common to all
individuals, and paths unique to an individual. In fMRI data,
AR effects are consistently present and large in magnitude
due to the lagged nature of the hemodynamic response
following neural activation (Huettel, Song, & McCarthy,
2004). Additionally, though the Human Connectome
Project aims to establish a “blueprint” of connectivity that
exists across all individuals (Van Essen et al., 2013), it has
also been acknowledged that a sizable amount of the con-
nectome is thought to be unique to the individual (Barch
et al., 2013). Moreover, the individual variability present in
connectivity has been shown to be predictive of a host of
cognitive and behavioral outcomes (van den Heuvel, Stam,

TABLE 1
Summary of Output Files

Level File Contents

Group indivPathEstimates A .csv file containing each element estimated for each individual

summaryPathCounts A .csv file containing a breakdown of counts for each path, whether it was estimated at the group, subgroup, or
individual level. Also available in matrix form in summaryPathCountMatrix.csv

summaryFit A .csv file containing model fit convergence, and subgroup membership for each individual

summaryPathsPlot A .pdf containing figure with group-, subgroup-, and individual-level paths for the sample. Black paths are group-
level, green paths are subgroup- level, and gray paths are individual-level, where the thickness of the line
represents the count

Subgroup subgroupkPathCountsMatrix A .csv containing counts of relations among lagged and contemporaneous variables for the k th subgroup

subgroupkPlot A .pdf containing a plot of group-, subgroup-, and individual- level paths for the k th subgroup. Black represents
group-level paths, grey represents individual-level paths, and green represents subgroup-level paths

Individual filenameBetas A .csv file containing the β matrix for individual contained in filename. The first p columns contain the φ matrix, and
the next p columns contain the A matrix

filenameStdErrors A .csv file containing the SE matrix for the individual contained in filename. The first p columns contain the SEs for
the φ matrix, and the next p columns contain the SEs for the A matrix

filenamePlot A .pdf containing the individual-level for the individual contained in filename. Red paths represent positive weights
and blue paths represent negative weights

Note. SE = Standard error.

TABLE 2
Summary of Functions

Function Purpose

gimmeSEM() Conducts model search for group- (potentially) subgroup-, and individual-level paths to provide unique estimates for all individuals

indSEM() Conducts model search and estimation of individual-level paths to provide unique structure and estimates for all individuals

aggSEM() Concatenates data, conducts model search, and estimates only group-level paths

1 paths <- ’V2 ~ V4

2 V6 ~ V3lag’

3

4 gimmeSEM(data = “C:/example1”,

5 out = “C:/example1_out”

6 paths = paths)
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Kahn, & Pol, 2009). Therefore, we generate data here char-
acterized by (a) sizable AR effects present across all per-
sons, (b) shared connections across all persons, (c)
connections shared across individuals in a subgroup, and
(d) connections unique to a given individual.

Using simple algebraic substitution, Equation 1 can be
rewritten in the following manner to generate data for one
individual with a lag of one time point:

ηt ¼ ðI # AÞ#1ðϕηt#1
þ ζtÞ (3)

where I is an identity matrix of order ðp; pÞ and ζt is a
vector of innovations with unit variance. Data of length
T ¼ 200 were generated for 25 replications (i.e., indivi-
duals). All individual replications had the group-level
paths depicted in Figure 3a. The group-level paths have a
weight of .5 for all individuals unless otherwise dictated by
their subgroup membership. There were two equally-sized
subgroups comprising the sample. These subgroups dif-
fered from each other in that (a) one of the group-level
paths was made negative for one subgroup, and (b) each

group had two additional subgroup-specific paths. These
differences are depicted in Figure 3b and Figure 3c.
Finally, at the individual level, individuals had an extra
path in both the lagged and contemporaneous matrix at a
probability of .01 (not depicted in Figure 3). These data
replicate true data seen in the literature by having group,
subgroup, and individual-level paths and weights that vary
systematically across these levels. These data are loaded
with the gimme package, and could be analyzed with the
following code:

Note that the output of the gimmeSEM() run is direc-
ted to an object named fit using the assignment operator,
<-. After successful completion of the model search, sum-
mary information prints to the console:

Two main options exist for viewing and interacting with
output. First, if the user specifies a file path in the out
argument, a copy of all relevant output will be placed in
the specified directory. If the directory at the specified file
path does not exist, it will be created. The user can also
direct the output from gimmeSEM to an object (here, fit)
and use predefined functions to access individual-, sub-
group-, and group-level output.

Group-and Subgroup-Level Output

To access group-level and subgroup-level information, we
may use a series of functions to inspect the fit object where
output was directed. Note that output will be available in
this object regardless of whether an output directory was
specified. For example, to view a path diagram depicting
relationships across the entire sample, we can use:

This image is depicted in Figure 4a. To view plots
specific to each subgroup, we can specify:

These images are depicted in Figure 4b and 4c.

FIGURE 2 Graphical user interface.

1 fit <- gimmeSEM(data = simData,

2 subgroup = TRUE)

1 gimme finished running normally

2 Number of subgroups = 2

3 Modularity = 0.14043

1 plot(fit)

1 plot (fit, subgroup = 1)

2 plot (fit, subgroup = 2)
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Similarly, to view a matrix containing the counts repre-
senting the number of individuals for whom a path was
estimated, we can specify:

This matrix provides a first glance into the level of
heterogeneity present in the sample. Here, with 25 indi-
viduals, a count of 25 represents that a path emerged at
the grouplevel; that is, it is contained in every indivi-
dual’s final model. Counts of less than 25 indicate that the
path was either estimated at the subgroup or the indivi-
dual level. If a user wishes to view the average across the
sample instead, print(fit, mean = TRUE) can be
used. To partition this matrix by subgroup membership,
we can use print(fit, subgroup = 1) to view the
count matrix across individuals in Subgroup 1, and we
can use print(fit, subgroup = 1, mean = TRUE)

to view the average coefficient matrix across individuals
in Subgroup 1. The latter coefficient matrix represents the

average of the coefficient matrices across individuals in
Subgroup 1.

Individual-Level Output

We can view an individual-level matrix using the print()
function, which displays the contemporaneous and lagged
coefficient matrices for a given individual. Here, if data
were read in from a physical directory, the file name should
be the original name without the file extension (e.g.,
group_1_2 if the original file were named
group_1_2.csv). If data were provided in a list format,
the file name should be the name of that individual’s data
matrix in the list. For example, to view the coefficient
matrix for group_1_2 within the simData list, the fol-
lowing code can be used:
Here, the rows contain the dependent (predicted) variables
and the columns contain the independent variables. For
instance, the value of 0.56 at the intersection of V1 and
V1lag indicates that V1lag predicts V1 with a β of
0.56. An individual-level path diagram depicting these

FIGURE 3 Data-generating models. Solid lines indicate a contemporaneous effect; dashed lines indicate a lagged effect. Black lines indicate a group-level
effect; orange paths indicate an effect unique to subgroup 1; blue lines indicate a path unique to subgroup 2. Width of line corresponds to the count of
individuals for whom the path was generated.

FIGURE 4 Output from gimmeSEM. Solid lines indicate a contemporaneous effect; dashed lines indicate a lagged effect. Black lines indicate a group-level
effect; green paths indicate an effect at the subgroup level; gray paths indicate an effect unique to an individual. Width of line corresponds to the count of
individuals for whom the path was estimated.

1 print (fit)
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relations can be obtained using plot(fit, file =

“group_1_2”), where red paths indicate positive
paths, blue paths indicate negative paths, and the width
of the path represents its magnitude, (see Figure 5).

To access the fit indexes, convergence status, and sub-
group membership of a given individual, the
fitMeasures argument can be used within the print

() function.
which yields the information for a single individual:
From this, we see the fit of the final model for individual

group_1_2 is χ2ð117Þ ¼ 256:79; p<:05; RMSEA ¼
:077; SRMR ¼ :017;NNFI ¼ :981;CFI ¼ :967, suggesting
a model with good fit.

EMPIRICAL DATA EXAMPLE

To further illustrate the use and interpretation of the
package, we use daily diary data collected by

Borkenau and Ostendorf (1998). In this study, 22 indi-
viduals were asked for 90 consecutive days to respond to
30 self-report markers of the Big Five (Borkenau &
Ostendorf, 1998). For illustrative purposes, we have
selected six items pertaining to the Neuroticism dimen-
sion of the Big Five. These items include irritable (irr),
emotionally stable (emot), calm, bad-tempered (bad-
temp), resistant (res), and vulnerable (vul). Analyzing
these data will allow for insight into the lagged and
contemporaneous relationships characterizing intraindi-
vidual variation over time.

If all individuals’ data matrices are contained within a
list, a gimme run can be structured using:

Given that no output directory is specified, all rele-
vant output will be directed to the fit object using the
assignment operator (<-). We can view the summary
matrix containing the count of paths across individuals
using:

which displays:
From these results, we see that three sample-level paths
emerged contemporaneously: vulnerability predicting
emotional stability, vulnerability predicting resistance,

1 Please specify a file id for individual coefficient matrix.

2 Otherwise, a summary count matrix and sample average matrix are presented below.

3

4 Lagged Count Matrix for Sample

5 V1lag V2lag V3lag V4lag V5lag V6lag V7lag V8lag V9lag V10lag

6 V1 25 1 0 0 0 0 1 0 0 0

7 V2 1 25 0 0 0 0 13 0 0 0

8 V3 1 2 25 0 0 0 0 0 0 0

9 V4 0 0 1 25 1 0 0 0 0 25

10 V5 0 0 0 0 25 0 0 0 25 0

11 V6 2 1 12 0 0 25 0 0 1 0

12 V7 0 1 0 1 0 0 25 1 1 0

13 V8 1 2 0 12 25 0 2 25 0 0

14 V9 25 0 0 0 1 1 0 13 25 0

15 V10 2 0 1 0 0 0 0 0 1 25

16

17 Contemporaneous Count Matrix for Sample

18 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

19 V1 0 1 13 0 0 0 0 25 0 12

20 V2 13 0 0 0 1 25 0 0 0 0

21 V3 0 0 0 12 1 0 0 25 0 2

22 V4 0 0 0 0 0 0 25 0 13 0

23 V5 0 0 25 13 0 1 0 0 1 0

24 V6 0 1 0 0 0 0 0 0 0 0

25 V7 25 0 1 0 1 0 0 12 0 0

26 V8 0 0 0 0 0 1 0 0 0 0

27 V9 0 0 13 0 1 0 0 0 0 0

28 V10 0 1 1 0 2 0 12 0 0 0

1 print(fit, file = “group_1_2”)
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and irritability predicting vulnerability. This indicates
that these relationships were significant for greater than
75% of the sample. Interestingly, we see that all sample-
level paths surfaced contemporaneously. This might be
due to a difference in the speed of the process under
observation and the time between measurement occa-
sion. That is, when processes occur faster than the rate

1 Lagged Matrix for group_1_2

2 V1lag V2lag V3lag V4lag V5lag V6lag V7lag V8lag V9lag V10lag

3 V1 0.56 0.00 0.00 0.00 0.00 0.0 0.00 0.000 .00 0.00

4 V2 0.00 0.58 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00

5 V3 0.00 0.00 0.30 0.00 0.00 0.0 0.00 0.00 0.00 0.00

6 V4 0.00 0.00 0.00 0.53 0.00 0.0 0.00 0.00 0.00 -0.50

7 V5 0.00 0.00 0.00 0.00 0.53 0.0 0.00 0.00 -0.39 0.00

8 V6 0.00 0.00 -0.63 0.00 0.00 0.6 0.00 0.00 0.00 0.00

9 V7 0.00 -0.89 0.00 0.00 0.00 0.0 0.51 0.00 0.00 0.00

10 V8 0.00 0.00 0.00 -0.31 -0.43 0.0 0.00 0.62 0.00 0.00

11 V9 -0.55 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.63 0.00

12 V10 -0.48 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.56

13

14 Contemporaneous Matrix for group_1_2

15 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

16 V1 0.00 0 0.00 0.00 0 0.00 0.00 0.76 0 0.47

17 V2 0.00 0 0.00 0.00 0 0.58 0.00 0.00 0 0.00

18 V3 0.00 0 0.00 0.15 0 0.00 0.00 0.84 0 0.00

19 V4 0.00 0 0.00 0.00 0 0.00 0.36 0.00 0 0.00

20 V5 0.00 0 0.57 0.00 0 0.00 0.00 0.00 0 0.00

21 V6 0.00 0 0.00 0.00 0 0.00 0.00 0.00 0 0.00

22 V7 -0.62 0 0.00 0.00 0 0.00 0.00 1.03 0 0.00

23 V8 0.00 0 0.00 0.00 0 0.00 0.00 0.00 0 0.00

24 V9 0.00 0 0.00 0.00 0 0.00 0.00 0.00 0 0.00

25 V10 0.00 0 0.00 0.00 0 0.00 0.31 0.00 0 0.00

FIGURE 5 Individual-level diagram for “group_1_2” from simData. Solid
lines indicate a contemporaneous effect; dashed lines indicate a lagged effect.
Red lines indicate a positive effect; blue lines indicate a negative effect. The
width of the line corresponds to the magnitude of the effect.

1 print(fit, file = “group_1_2”, fitMeasures = TRUE)

1 Fit for file group_1_2

2 chisq df pval rmsea srmr nnfi cfi status subgroup

3 256.7882 117 0 0.0773 0.0169 0.9812 0.9695

converged normally 2

1 fit <- gimmeSEM(data = borkenau)

1 print(fit)
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1 Please specify a file id for individual coefficient matrix.

2 Otherwise, summary count matrix is presented below.

3

4 Lagged Count Matrix for Sample

5 irrlag emotlag calmlag badtemplag reslag vullag

6 irr 22 2 0 1 0 0

7 emot 1 22 0 1 0 0

8 calm 0 0 22 1 0 0

9 badtemp 0 0 0 22 0 0

10 res 0 0 1 1 22 0

11 vul 0 1 0 1 0 22

12

13 Contemporaneous Count Matrix for Sample

14 irr emot calm badtemp res vul

15 irr 0 4 3 5 3 0

16 emot 4 0 0 1 4 22

17 calm 0 12 0 4 2 5

18 badtemp 5 7 0 0 1 3

19 res 3 3 0 1 0 22

20 vul 22 1 0 1 4 0

1 print(fit, mean = TRUE)

1 Please specify a file id for individual coefficient matrix.

2 Otherwise, a summary average matrix is presented below.

3

4 Lagged Average Matrix for Sample

5 irrlag emotlag calmlag badtemplag reslag vullag

6 irr 0.11 0.00 0.00 -0.01 0.00 0.00

7 emot -0.01 0.08 0.00 -0.01 0.00 0.00

8 calm 0.00 0.00 0.05 0.01 0.00 0.00

9 badtemp 0.00 0.00 0.00 0.10 0.00 0.00

10 res 0.00 0.00 0.01 -0.01 0.05 0.00

11 vul 0.00 -0.01 0.00 0.01 0.00 0.05

12

13 Contemporaneous Average Matrix for Sample

14 irr emot calm badtemp res vul

15 irr 0.00 -0.01 -0.11 0.11 -0.04 0.00

16 emot -0.10 0.00 0.00 -0.02 0.09 -0.36

17 calm 0.00 0.31 0.00 -0.04 0.03 -0.09

18 badtemp 0.11 -0.17 0.00 0.00 -0.01 0.07

19 res -0.09 0.05 0.00 -0.01 0.00 -0.33

20 vul 1.46 0.02 0.00 0.01 0.90 0.00
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of observation, effects could surface contemporaneously
(Granger, 1969).

We may view the average of the relationships across
individuals using:
Here, the coefficients are averaged across all persons,
including individuals for whom a coefficient might have
been zero.

Similarly, the coefficients for a given individual can be
accessed using their file name (without extension) or the
name of their list. Thus, the coefficient matrix for indivi-
dual “BorkInd4” can be accessed using:

Here, we can see an individual’s coefficients for her final
model, composed of group- and individual-level paths.
For example, for the group-level path between irritability
and vulnerability, we see β ¼ 0:57. Similarly, for the
group-level path between vulnerability and emotional
stability, we see β ¼ #0:32. Importantly, although these
group-level paths are estimated across all persons, each
person has a unique estimate.

We can also view this using the predefined plot()

function, where the plot for the same individual can be
viewed using:

This plot is displayed in Figure 6.

DISCUSSION

The R package gimme described in this article introduces
an SEM-based method for identifying group-, subgroup-,

and individual-level relations within time series data. This
package promises to be useful for researchers analyzing a
range of data, from establishing functional connectivity
using fMRI data to investigating dynamic processes over
time within daily diary data.

The gimme package is characterized by a number of
strengths. It utilizes the popular and well-maintained
lavaan package for estimation. Additionally, given the
small number of commands required by the user, as well
as the availability of a GUI, gimme can be used by both
inexperienced and experienced R users. The automatic
identification and estimation of models greatly reduces
user burden. Importantly, this implementation improves
on the original GIMME by offering a community detec-

tion based subgrouping procedure, automatically gener-
ated summary graphics using the qgraph package
(Epskamp et al., 2012), and the ability to begin model
estimation with semi confirmatory paths. Additionally,
this implementation of GIMME only requires R, not a
combination of proprietary software like the original
GIMME toolbox.

Multiple aspects of the gimme package are open to further
development. For example, the current implementation slows
considerably when trying to estimate relations among more
than 20 variables; however, work is underway to expand the
package to allow for the estimation of relations among more
variables, including both a measurement and structural
model, using an alternative estimation procedure. Another
extension could allow for estimation of exogenous variables
that have been convolved with a hemodynamic response
function for use fMRI data obtained during an event-related
design. We encourage users to contribute to our Github page

1 print(fit, file = “BorkInd4”)

1 Lagged Matrix for BorkInd4

2 irrlag emotlag calmlag badtemplag reslag vullag

3 irr 0.18 0.00 0.00 0.00 0.00 0.00

4 emot 0.00 0.11 0.00 0.00 0.00 0.00

5 calm 0.00 0.00 0.12 0.00 0.00 0.00

6 badtemp 0.00 0.00 0.00 0.24 0.00 0.00

7 res 0.00 0.00 0.23 0.00 0.17 0.00

8 vul 0.00 0.00 0.00 0.00 0.00 0.05

9

10 Contemporaneous Matrix for BorkInd4

11 irr emot calm badtemp res vul

12 irr 0.00 0.00 0 0 0 0.00

13 emot -0.29 0.00 0 0 0 -0.32

14 calm 0.00 0.55 0 0 0 0.00

15 badtemp 0.00 -0.39 0 0 0 0.00

16 res 0.00 0.00 0 0 0 0.04

17 vul 0.57 0.00 0 0 0 0.00
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at https://github.com/GatesLab/gimme. In
sum, gimme represents a flexible, user-friendly package to
evaluate individual-level time series data using an automated
search procedure rooted in SEM.
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